Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.

In diesem Artikel

  • Zusammenfassung
  • Zusammenfassung
  • Einleitung
  • Protokoll
  • Repräsentative Ergebnisse
  • Diskussion
  • Offenlegungen
  • Danksagungen
  • Materialien
  • Referenzen
  • Nachdrucke und Genehmigungen

Zusammenfassung

Hier stellen wir Protokolle für die Arbeit mit Limosilactobacillus reuteri DSM20016 vor, die das Wachstum, die Plasmidtransformation, die Kolonie-PCR, die fluoreszierende Reporterproteinmessung und die begrenzte Plasmid-Minivorbereitung detailliert beschreiben, sowie häufige Probleme und Fehlerbehebung. Diese Protokolle ermöglichen die Messung von Reporterproteinen in DSM20016 oder die Bestätigung durch Kolonie-PCR, wenn kein Reporter beteiligt ist.

Zusammenfassung

Lactobacillus waren eine unglaublich große, vielfältige Bakteriengattung mit 261 Arten, von denen einige kommensale Stämme waren, die das Potenzial hatten, als Chassis für synthetische biologische Unternehmungen im Magen-Darm-Trakt verwendet zu werden. Die große phänotypische und genotypische Variation, die innerhalb der Gattung beobachtet wurde, führte zu einer kürzlichen Neuklassifizierung und der Einführung von 23 neuen Gattungen.

Aufgrund der Breite der Variationen innerhalb der alten Gattungen kann es vorkommen, dass Protokolle, die in einem Mitglied nachgewiesen wurden, bei anderen Mitgliedern nicht so funktionieren, wie es angekündigt wurde. Der Mangel an zentralisierten Informationen darüber, wie bestimmte Stämme genau manipuliert werden können, hat zu einer Reihe von Ad-hoc-Ansätzen geführt, die oft von anderen Bakterienfamilien übernommen wurden. Dies kann die Sache für Forscher, die auf diesem Gebiet beginnen, erschweren, da sie möglicherweise nicht wissen, welche Informationen auf die von ihnen gewählte Sorte zutreffen und welche nicht.

In diesem Artikel wollen wir eine Reihe von Protokollen mit nachgewiesenem Erfolg zentralisieren, insbesondere in der Limosilactobacillus reuteri-Stammbezeichnung F275 (andere Sammlungsnummern: DSM20016, ATCC23272, CIP109823), zusammen mit Ratschlägen zur Fehlerbehebung und häufigen Problemen, auf die man stoßen kann. Diese Protokolle sollten es einem Forscher mit wenig bis gar keiner Erfahrung in der Arbeit mit L. reuteri DSM20016 ermöglichen, ein Plasmid zu transformieren, die Transformation zu bestätigen und die Systemrückkopplung in einem Plattenleser über ein Reporterprotein zu messen.

Einleitung

Die Gattung Lactobacillus wurde historisch als grampositive, stäbchenförmige, nicht sporenbildende Anaerobier oder Mikroaerophile klassifiziert, die Zucker abbauen, um hauptsächlich Milchsäure zu produzieren1. Diese lockeren Kriterien führten dazu, dass Lactobacillus phänotypisch und genotypisch eine äußerst vielfältige Gattung ist. Diese breite Kategorisierung führte dazu, dass die Gattung neu klassifiziert wurde und im Jahr 2020 23 neue Gattungen eingeführt wurden2.

Die alte, breitere Gattung umfasste wichtige kommensale und probiotische Arten, die allgemein als sicher für ....

Protokoll

1. Herstellung von L. reuteri DSM20016 elektrokompetente Zellen

HINWEIS: Dies basiert auf einem Protokoll von Berthier et al.17, wobei die Zentrifugationsgeschwindigkeiten von Rattanachaikunsopon et al.18. Der Teufel

  1. In einem 50-ml-Zentrifugenröhrchen L. reuteri aus dem Glycerinvorrat in 6 ml deMan Rogosa Sharpe (MRS)-Brühe beimpfen. Aerob über Nacht bei 37 °C in einem statischen Inkubator inkubieren.
  2. Am nächsten Morgen werden 4 ml der Nachtkultur in 200 ml MRS-Brühe (1:50 Verdünnung) geimpft.
  3. In einem statischen Inkubat....

Repräsentative Ergebnisse

Effizienz der Transformation
L. reuteri benötigt kein dcm-/dam-nicht-methyliertes Plasmid, wie es bei anderen Lactobacillaceaebeobachtet wurde 19,20 (siehe Abbildung 1). Die Elektroporation von L. reuteri DSM20016 mit 10 μL des 8,5 kb Plasmids pTRKH3_mCherry2 (pAMβ1 Theta-Ursprung der Replikation) sollte Transformationseffizienzen von etwa 80 koloniebildenden Ein.......

Diskussion

Der kritischste Schritt für die Transformation von L. reuteri DSM20016 ist die Erzeugung von anaeroben Wachstumsbedingungen nach der Transformation; Kolonien, die unter aeroben Bedingungen gewonnen werden, sind nur sehr selten und wachsen im Allgemeinen nicht, wenn sie in MRS-Brühe geimpft werden. Die Beschichtung des gesamten Erholungsvolumens sollte ebenfalls geübt werden, um die Wahrscheinlichkeit des Koloniewachstums zu maximieren. Selbst mit diesen beiden kritischen Schritten ist die Transformationseffiz.......

Offenlegungen

Es bestehen keine Interessenkonflikte.

Danksagungen

Wir schätzen die wertvolle Beratung durch Prof. J.P. van Pijkeren (University of Wisconsin-Madison), dessen Anleitung zur Arbeit mit L. reuteri ATCC PTA 6475 eine Grundlage für die hier beschriebenen Methoden bildete.

....

Materialien

NameCompanyCatalog NumberComments
1 kb Plus DNA LadderNEBN3200L
1mL Spectrophotometer cuvettesThomas Scientific1145J12
Agarose BioShopAGR001
Allegra X-15R (refrigerated centrifuge)Beckman Allegra N/ANo longer in production
AnaeroGen 2.5 L SachetThermo ScientificOXAN0025A
BTX, ECM 399 electroporation systemVWR58017-984
Centrifuge tubes (50 mL)FroggaBioTB50-500
DNA gel x6 loading dyeNEBB7024S
Electroporation cuvetteFisherbrandFB101
ErythromycinMillipore SigmaE5389-5G
Gel electroporation bath/dockVWR76314-748
Glycerol BioShopGLY001
Limosilactobacillus reuteriLeibniz Institute DSMZDSM20016Strain designation F275
LysozymeBioShopLYS702.5
Microcentrifuge tubes (1.7 mL)FroggaBioLMCT1.7B
Miniprep kit (Qiagen)Qiagen27106slpGFP replaced with constitutive, codon optimised, mCherry2 reporter protein 
MRS Broth (Dehydrated)Thermo ScientificCM0359B
MutanolysinMillipore SigmaM9901-5KU
NaOH Millipore Sigma1064691000
P100 PipetteEppendorf3123000047
P1000 PipetteEppendorf3123000063
P2.5 PipetteEppendorf3123000012
P20 PipetteEppendorf3123000039
P200 PipetteEppendorf3123000055
PCR tubesFroggaBioSTF-A120S
Personal benchtop microcentrifugeGenlantisE200100
Petri dishesVWR25384-088
PTC-150 Thermal CyclerMJ ResearchN/ANo longer in production
pTRKH3_slpGFP (modified)Addgene27168
SPECTRONIC 200 SpectrophotometerThermo Scientific840-281700
Storage microplateFisher Scientific14-222-225
SucroseBioShopSUC507
TAE Buffer 50xThermo ScientificB49
VortexVWR58816-121No longer in production
VWR 1500E incubatorVWRN/ANo longer in production

Referenzen

  1. Makarova, K., et al. Comparative genomics of the lactic acid bacteria. Proceedings of the National Academy of Sciences. 103 (42), 15611-15616 (2006).
  2. Zheng, J., et al.

Nachdrucke und Genehmigungen

Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden

Genehmigung beantragen

Weitere Artikel entdecken

BioengineeringHeft 196

This article has been published

Video Coming Soon

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten