Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Abstract
  • Reprints and Permissions

Abstract

Lactobacillus were an incredibly large, diverse genus of bacteria comprising 261 species, several of which were commensal strains with the potential for use as a chassis for synthetic biological endeavors within the gastrointestinal tract. The wide phenotypic and genotypic variation observed within the genus led to a recent reclassification and the introduction of 23 novel genera.

Due to the breadth of variations within the old genera, protocols demonstrated in one member may not work as advertised with other members. A lack of centralized information on how exactly to manipulate specific strains has led to a range of ad hoc approaches, often adapted from other bacterial families. This can complicate matters for researchers starting in the field, who may not know which information does or does not apply to their chosen strain.

In this paper, we aim to centralize a set of protocols with demonstrated success, specifically in the Limosilactobacillus reuteri strain designation F275 (other collection numbers: DSM20016, ATCC23272, CIP109823), along with troubleshooting advice and common issues one may encounter. These protocols should enable a researcher with little to no experience working with L. reuteri DSM20016 to transform a plasmid, confirm transformation, and measure system feedback in a plate reader via a reporter protein.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Keywords ElectroporationTransformationLimosilactobacillus Reuteri DSM20016Synthetic BiologyLactobacillalesGastrointestinal TractTherapeutic DeliveryDisease DetectionProtocolsCentralized Information

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved