JoVE Logo
Faculty Resource Center

Sign In

Abstract

Medicine

Determination of Continuity Index Values in Atrial Fibrillation Ablation with Proactive Esophageal Cooling

Published: April 19th, 2024

DOI:

10.3791/66688

1Northwestern University, 2Washington University in St. Louis, 3University of Southern California, 4Attune Medical, 5University of Texas Southwestern Medical Center, 6NorthShore University Hospital

Radiofrequency (RF) ablation to perform pulmonary vein isolation (PVI) for the treatment of atrial fibrillation involves some risk to collateral structures, including the esophagus. Proactive esophageal cooling using a dedicated device has been granted marketing authorization by the Food and Drug Administration (FDA) to reduce the risk of ablation-related esophageal injury due to RF cardiac ablation procedures, and more recent data also suggest that esophageal cooling may contribute to improved long-term efficacy of treatment. A mechanistic underpinning explaining these findings exists through the quantification of lesion placement contiguity defined as the Continuity Index (CI). Kautzner et al. quantified the CI by the order of lesion placement, such that whenever a lesion is placed non-adjacent to the prior lesion, the CI is incremented by the number of segments the catheter tip has moved over.

To facilitate real-time calculation of the CI and encourage further adoption of this instrument, we propose a modification in which the placement of non-adjacent lesions increments the CI by only one unit, avoiding the need to count potentially nebulous markers of atrial segmentation. The objective of this protocol is to describe the methods of calculating the CI both prospectively during real-time PVI cases and retrospectively using recorded case data. A comparison of the results obtained between cases that utilized proactive esophageal cooling and cases that used luminal esophageal temperature (LET) monitoring is then provided.

Tags

Medicine

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved