Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Method Article
Ce protocole décrit l'utilisation de bromodésoxyuridine (BrdU) absorption pour permettre le suivi temporel des cellules qui étaient en phase S à un moment précis dans le temps. Addition de colorants d'ADN et de l'étiquetage d'anticorps facilite l'analyse détaillée du sort des cellules en phase S au temps plus tard.
This protocol describes a method to permit the tracking of cells through the cell cycle without requiring the cells to be synchronized. Achieving cell synchronization can be difficult for many cell systems. Standard practice is to block cell cycle progression at a specific stage and then release the accumulated cells producing a wave of cells progressing through the cycle in unison. However, some cell types find this block toxic resulting in abnormal cell cycling, or even mass death. Bromodeoxyuridine (BrdU) uptake can be used to track the cell cycle stage of individual cells. Cells incorporate this synthetic thymidine analog, while synthesizing new DNA during S phase. By providing BrdU for a brief period it is possible to mark a pool of cells that were in S phase while the BrdU was present. These cells can then be tracked through the remainder of the cell cycle and into the next round of replication, permitting the duration of the cell cycle phases to be determined without the need to induce a potentially toxic cell cycle block. It is also possible to determine and correlate the expression of both internal and external proteins during subsequent stages of the cell cycle. These can be used to further refine the assignment of cell cycle stage or assess effects on other cellular functions such as checkpoint activation or cell death.
L'évaluation des caractéristiques du cycle cellulaire et les changements qui se produisent dans les cellules au cours de la progression du cycle cellulaire est fondamentale pour comprendre de nombreux aspects de la biologie, en particulier la biologie du cancer. De nombreux agents de développement pour le traitement de tumeurs malignes ont des effets profonds sur la progression du cycle cellulaire ou induire la mort cellulaire par l'intermédiaire de mécanismes dépendants-du cycle cellulaire. Afin d'étudier la dynamique du cycle cellulaire ou des cellules dans une phase particulière du cycle cellulaire, il est usuel de synchroniser les cellules. Cependant, les méthodes de synchronisation peuvent avoir des effets néfastes sur les cellules étudiées, potentiellement confondant les résultats obtenus. 1 analyse Récemment, l'utilisation de protéines marquées par fluorescence qui ne sont présents à des phases particulières du cycle de cellules ont permis la progression du cycle cellulaire dans des cellules individuelles au fil du temps 2, cependant les cellules à étudier besoin d'être génétiquement manipulée pour exprimer ces protéines marquées, ce qui limite leur utilisation à des systèmes dans lesquels il peut être luily atteint.
Le cycle cellulaire est constitué de deux phases actives: la phase de synthèse (S), où l'ADN est répliqué et la mitose (M) où la division cellulaire a lieu. Ces phases sont séparées par trois phases de l'écart, G 0, G 1 et G 2. G 0 ou quiescence, est une phase de repos où la cellule a laissé le cycle, G 1 est où les cellules augmentent de taille avant replication de l'ADN et G 2 dans laquelle la croissance cellulaire continue entre l'achèvement de la replication de l'ADN, mais avant la division cellulaire. La progression à travers le cycle cellulaire est régulée par un certain nombre de points de contrôle. Le G 1 point de contrôle est activé lorsque les conditions environnementales ne sont pas favorables à la synthèse d'ADN et empêche l'entrée en phase S. La phase checkpoint ou de retard intra-S peuvent être déclenchées par des dommages de l'ADN qui peuvent entraîner des fourches de réplication bloquées. Pendant G 2 de la fidélité de l'ADN répliqué est confirmée et si le dommage est détecté, le G 2 checkpoint est activée en permettant réparation de l'ADN avant la division cellulaire. Un point de contrôle finale lors de la mitose assure que chromatides ont été correctement alignés à la plaque mitotique sorte que la division cellulaire peut être complété avec succès. 3 L'activation de ces points de contrôle est communément utilisé pour synchroniser des populations cellulaires. points de contrôle du cycle cellulaire peuvent être activés par un certain nombre de facteurs, mais dans la biologie du cancer le plus commun est la détection des lésions de l'ADN. La réponse aux dommages de l'ADN est initiée par la PI3-kinase comme le télangiectasie kinases de l'ataxie et Rad3 liées (ATR) et protéine atm (ATM) qui activent les kinases effectrices aval Chk1 et Chk2, respectivement. 3 Une gamme d'événements active Chk1 y compris l'impasse fourches de réplication, réticulations d'ADN, et ultraviolet dégâts d'irradiation tout Chk2 est principalement activés par cassures double-brin.
La méthode habituelle pour étudier l'effet de conditions modifiées de la durée du cycle cellulaire is pour synchroniser les cellules dans une phase particulière du cycle cellulaire. 1 Ceci peut être réalisé par plusieurs procédés. Les cellules peuvent être physiquement séparés en fonction de la taille, la densité, la diffusion latérale (granularité), et des marqueurs d'expression de surface cellulaire. Plus concrètement, les cellules peuvent être synchronisées par des moyens chimiques. Plusieurs agents tels que la thymidine, l'hydroxyurée et la cytosine arabinoside peuvent être utilisés pour inhiber la synthèse d'ADN dans la phase S du cycle cellulaire résulte en une accumulation de cellules en phase S qui continuent après cyclage les agents sont enlevés. Les cellules traitées avec le nocodazole, ce qui empêche la formation du fuseau mitotique, avec un arrêt G 2 - phase M ou la teneur en ADN. Élimination de sérum à partir des résultats de milieu de culture dans l'accumulation de cellules en G 0 phase. Le rajout des éléments nutritifs dans le sérum de culture relance le vélo normal des cellules. Cependant, toutes ces méthodes de synchronisation normale interférer avec le vélo et la croissance des cellules et peut Result dans la mort cellulaire significative.
Synchronisation des cellules de leucémie lymphoblastique aiguë est particulièrement difficile et ces cellules ne se prêtent pas à la manipulation génétique. Le procédé décrit ici permet l'évaluation de la dynamique du cycle cellulaire et l'étude des cellules en phases particulières du cycle cellulaire sans synchronisation traditionnel ou une modification génétique. Cette méthode peut également être utile pour d'autres types lorsque la modification génétique et les procédures de synchronisation traditionnels ne sont pas facilement obtenus cellulaires. La méthode est basée sur l'utilisation de longue date de bromodésoxyuridine (BrdU) l'incorporation, qui a très peu d'impact sur la croissance à court terme et la prolifération des cellules. 4 protocoles de BrdU établis profitent de l'incorporation de BrdU dans l'ADN nouvellement synthétisé pendant la phase S . Ceci marque en permanence des cellules comme ayant été en phase S pendant l'exposition au BrdU. Cette population peut être identifié à des temps plus tard par coloration pour BrdU Incorporation et ainsi agir comme une population synchronisé qui peut être suivie et évaluée dans le temps permettant l'étude des effets des médicaments sur le transit du cycle cellulaire. BrdU besoin d'être exposée avant la coloration des anticorps, généralement obtenus après traitement à l'acide ou DNase. 6,7 En utilisant la cytométrie en flux pour détecter la BrdU incorporée permet l'inclusion de marqueurs supplémentaires. Le plus important est l'utilisation de colorants pour mesurer la teneur en ADN, ce qui permet l'évaluation de la distribution de phase du cycle cellulaire des cellules qui étaient en phase S au début de l'étude. 8 surface ou intracellulaires des antigènes outre supplémentaires peuvent également être étudiés. 9 Ces peuvent se rapporter à des événements du cycle cellulaire telles que Ki67 ou fonctions cellulaires à apparemment indépendants tels que des marqueurs de l'apoptose tels que la caspase-3 clivée. Les applications potentielles sont limitées par l'imagination de l'enquêteur.
Le protocole décrit ici utilise la lignée cellulaire lymphoblastique leucémie aiguë NALM6 mais peut être appliquée à d'autres types de cellules.
1. Les solutions et réactifs
2. Cellules
NonTe: Les cellules ont été cultivées pendant pas plus de 6 mois. Cette méthode est directement adaptable à toute lignée de cellules non-adhérentes avec des ajustements à la densité des cellules et des milieux de culture. Utiliser les cellules qui croissent de façon exponentielle au début de l'expérience.
3. Pulse marquage des cellules avec BrdU
ATTENTION: Manipulez BrdU avec précaution car il est un mutagène potentiel et tératogène.
4. coloration des cellules
Remarque: si la coloration de surface des cellules est nécessaire exécuter avant la fixation, en veillant à ce que les cellules sont maintenues à 4 ° C tout au long.
5. Collecte de données de cytométrie en flux
Remarque: La machine requis dépendra du nombre et de la nature des fluorochromes utilisés.
6. Analyse de cytométrie en flux de données
Remarque: FlowJo a été utilisé dans cette étude pour cytométrie de flux de données, mais d'autres logiciels peuvent également être utilisés. La stratégie de déclenchement est illustré sur la figure 1.
Figure 1: Stratégie Gating Gauche pa.nel: cellules non synchronisées sont présentés sur une FCS-A vs SSC-A dot plot. La population de cellules viables est identifié par la grille présentée. Panneau central: cellules bloquées à partir du panneau gauche sont indiqués sur une FSC-A vs FSC-H tracé de points (FSC-W peut être utilisé à la place de la hauteur). Doublets et les agrégats sont identifiés et exclus par la porte montré. Panneau de droite: cellules gated partir de la date de l'exclusion de doublet dans le panneau central sont présentés sur un 7-AAD vs APC-A dot plot. L'anticorps est marqué avec BrdU APC permettant l'identification des cellules qui ont incorporé la BrdU au cours de l'étiquetage d'impulsions. 7-AAD fournit des informations sur la teneur en ADN. La porte supérieure définit cellules positives pour BrdU et donc en phase S au moment de l'impulsion de BrdU, la porte en bas à gauche, les cellules en G 0/1 et la porte en bas à droite ceux de G 2 / M. S'il vous plaît cliquer ici pour voir une plus grande version de ce chiffre.
840 / 52840fig2highres.jpg "width =" 700 "/>
Figure 2:. Progression du cycle cellulaire Le premier panneau (toutes les cellules) est fermée sur la population de cellules défini par la porte d'exclusion de doublet. Cette population a été affichée dans un histogramme avec 7-AAD sur l'axe-X. Le pic du pic G 0/1 est indiqué par la flèche en dessous de l'axe. Dans les panneaux ultérieures des cellules positives à la BrdU ont été fermée comme sur la figure 1. La valeur de la position de 0/1 G obtenue lorsque gating de la porte d'exclusion de doublet est appliquée aux cellules BrdU positives gated logiciel au sein du cycle cellulaire FlowJo. Chaque panneau a été fermée subséquent sur la population BrdU positives comme représenté sur la figure 1 et la position du pic G 0/1 sur la base de la valeur obtenue dans l'analyse de l'ensemble de la population comme indiqué dans les deux premiers panneaux. Utilisation de la fraction BrdU négatif pour identifier l'emplacement de la population G 0/1 pour les cellules positives à la BrdU dans la même sample contrôle des différences légères dans l'intensité de la tache d'ADN entre les échantillons. Le numéro indiqué sur chaque panneau représente le temps écoulé depuis l'impulsion BrdU terminé. Les phases du cycle cellulaire calculées sont indiquées en vert ombragé. S'il vous plaît cliquer ici pour voir une version plus grande de cette figure.
Cette méthodologie peut être utilisée pour obtenir une série d'informations. Quelques applications sont décrites ici.
L'évaluation de la durée du cycle cellulaire
Pour déterminer le temps nécessaire pour les cellules de transit à travers le cycle cellulaire, les cellules sont récoltées à divers points de temps suivants l'impulsion de BrdU. Les intervalles entre les évaluations peuvent être adaptés à des cellules particulières en cour...
La capacité d'analyse du cycle cellulaire est importante pour la compréhension de la biologie du cancer et le mécanisme d'action de ces deux médicaments et les gènes qui influencent la prolifération cellulaire et la croissance. Bien qu'il existe une multitude de dosages qui mesurent la prolifération cellulaire aurait, dont la majorité ne fournissent une mesure qui indique les cellules numériques présents. Ceux-ci comprennent des dosages qui mesurent le nombre de cellules par visualisation directe e...
The authors have nothing to disclose.
The work was funded by the Leukemia and Lymphoma Society of the USA (6105-08), a Cancer Council NSW grant (13-02), an NHMRC Senior Research Fellowship (LJB) (1042305) and project grant (1041614).
Name | Company | Catalog Number | Comments |
APC BrdU Flow Kit | BD Biosciences | 552598 | Contains BrdU antibody, 7-AAD and BD Cytofix/Cytoperm Buffer (referred to as Fixation Buffer) |
BD Cytoperm Permeabilization Buffer Plus | BD Biosciences | 561651 | Referred to as Permeabilization buffer |
BD Perm/Wash Buffer | BD Biosciences | 554723 | Referred to as Wash buffer |
DNase | Sigma | D-4513 | |
BD Falcon 12 x 75 mm FACS tubes | BD Biosciences | 352008 | |
BD Pharmingen Stain Buffer | BD Biosciences | 554656 | |
BD LSR FORTESSA flow cytometer | BD Biosciences | FORTESSA | |
Pipetman | Gilson | P2, P20, P100, P1000 | |
RPMI 1,640 w/o L-Gln 500 ml | Lonza | 12-167F | |
DPBS | Lonza | 17-512F | |
Fetal Bovine Serum | FisherBiotec | FBS-7100113 | |
L-Glutamine | Sigma | G7513-100ML | |
5-Bromo-2′-deoxyuridine | Sigma | B5002-1G | |
Falcon TC 150 cm2 vented Flasks | BD Biosciences | 355001 | |
Pipettes 25 ml | Greiner | 760180 | |
Aersol Pipettes 200 µl | Interpath | 24700 | |
Aersol Pipettes 1 ml | Interpath | 24800 | |
Centrifuge | Spintron | GT-175R | |
CO2 incubator | Binder | C 150 | |
AF488 anti-Histone H3 Phospho (Ser10) Antibody | Cell Signalling | 9708S | |
Phospho-Chk2 (Thr68) (C13C1) Rabbit mAb | Cell Signalling | 2197S | |
Phospho-Chk1 (Ser345) (133D3) Rabbit mAb | Cell Signalling | 2348S | |
NALM6 | DSMZ | ACC-128 |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon