Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
The preliminary inquiry confirms that subarachnoid hemorrhage (SAH) causes brain pericyte demise. Evaluating pericyte contractility post-SAH requires differentiation between viable and non-viable brain pericytes. Hence, a procedure has been developed to label viable and non-viable brain pericytes concurrently in brain sections, facilitating observation using a high-resolution confocal microscope.
Pericytes are crucial mural cells situated within cerebral microcirculation, pivotal in actively modulating cerebral blood flow via contractility adjustments. Conventionally, their contractility is gauged by observing morphological shifts and nearby capillary diameter changes under specific circumstances. Yet, post-tissue fixation, evaluating vitality and ensuing pericyte contractility of imaged brain pericytes becomes compromised. Similarly, genetically labeling brain pericytes falls short in distinguishing between viable and non-viable pericytes, particularly in neurologic conditions like subarachnoid hemorrhage (SAH), where our preliminary investigation validates brain pericyte demise. A reliable protocol has been devised to surmount these constraints, enabling simultaneous fluorescent tagging of both functional and non-functional brain pericytes in brain sections. This labeling method allows high-resolution confocal microscope visualization, concurrently marking the brain slice microvasculature. This innovative protocol offers a means to appraise brain pericyte contractility, its impact on capillary diameter, and pericyte structure. Investigating brain pericyte contractility within the SAH context yields insightful comprehension of its effects on cerebral microcirculation.
Brain pericytes, distinguished by their slender protuberances and protruding cell bodies, encircle the microcirculation1,2. While cerebral blood flow augmentation is predominantly driven by capillary dilation, smaller arteries exhibit slower rates of dilation3. Pericyte contractility exerts influence over capillary diameter and pericyte morphology, impacting vascular dynamics4. Contraction of brain pericytes leads to capillary constriction, and in pathological scenarios, excessive contraction may impede erythrocyte flow5. Various factors, ....
The experimental protocol was approved by the Animal Ethics and Use Committee of Kunming Medical University (kmmu20220945). Sprague-Dawley (SD) rats of both sexes, 300-350 g, were used for the present study.
1. Inducing the SAH model
Under normal physiological conditions, brain pericytes generally do not undergo cell death. Figure 6 illustrates this phenomenon, with yellow indicating the presence of vital brain pericytes; brain pericytes show no staining with PI, indicating their viability. To further investigate whether pericytes remain attached to the microvasculature following cell death, methods were employed in a SAH rat model, and subsequent imaging was conducted.
Methods for imaging bot.......
Developed are high-resolution confocal imaging techniques for visualizing vital brain pericytes, non-vital brain pericytes, and the microvasculature in brain slices. In acute rat brain slices, the process entails initial labeling of pericytes with TO-PRO-311, followed by microvascular endothelial cells with IB412; subsequently, identification of deceased pericytes is conducted using PI. This protocol is straightforward, reproducible, and highly applicable for functional res.......
The study was supported by grants from the National Natural Science Foundation of China (81960226,81760223); the Natural Science Foundation of Yunnan Province (202001AS070045,202301AY070001-011)
....Name | Company | Catalog Number | Comments |
6-well plate | ABC biochemistry | ABC703006 | RT |
Adobe Photoshop | Adobe | Adobe Illustrator CS6 16.0.0 | RT |
Aluminium foil | MIAOJIE | 225 mm x 273 mm | RT |
CaCl2·2H2O | Sigma-Aldrich | C3881 | RT |
Confocal imaging software | Nikon | NIS-Elements 4.10.00 | RT |
Confocal Laser Scanning Microscope | Nikon | N-SIM/C2si | RT |
Gas tank (5% CO2, 95% O2) | PENGYIDA | 40L | RT |
Glass Bottom Confocal Dishes | Beyotime | FCFC020-10pcs | RT |
Glucose | Sigma-Aldrich | G5767 | RT |
Glue | EVOBOND | KH-502 | RT |
Ice machine | XUEKE | IMS-20 | RT |
Image analysis software | National Institutes of Health | Image J | RT |
Inhalation anesthesia system | SCIENCE | QAF700 | RT |
Isolectin B 4-FITC | SIGMA | L2895–2MG | Store aliquots at –20 °C |
KCl | Sigma-Aldrich | 7447–40–7 | RT |
KH2PO4 | Sigma-Aldrich | P0662 | RT |
MgSO4 | Sigma-Aldrich | M7506 | RT |
NaCl | Sigma-Aldrich | 7647–14–5 | RT |
NaH2PO4·H2O | Sigma-Aldrich | 10049–21–5 | RT |
NaHCO3 | Sigma-Aldrich | S5761 | RT |
Pasteur pipette | NEST Biotechnology | 318314 | RT |
Peristaltic Pump | Scientific Industries Inc | Model 203 | RT |
Propidium (Iodide) | Med Chem Express | HY-D0815/CS-7538 | Store aliquots at –20 °C |
Stereotaxic apparatus | SCIENCE | QA | RT |
Syringe pump | Harvard PUMP | PUMP 11 ELITE Nanomite | RT |
Thermostatic water bath | OLABO | HH-2 | RT |
Vibrating microtome | Leica | VT1200 | RT |
This article has been published
Video Coming Soon