Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Les indicateurs calciques codés génétiquement (GECI) permettent une analyse robuste de la signalisation des neurones sensoriels à l’échelle de la population. Ici, nous avons développé une nouvelle approche qui permet de visualiser in vivo l’activité des neurones des ganglions trijumeaux chez le rat.
Les indicateurs calciques génétiquement codés (GECI) permettent aux techniques d’imagerie de surveiller les changements dans le calcium intracellulaire dans des populations cellulaires ciblées. Leur rapport signal/bruit élevé fait des GECI un outil puissant pour détecter l’activité évoquée par un stimulus dans les neurones sensoriels. Les GECI facilitent l’analyse au niveau de la population de l’encodage des stimuli avec le nombre de neurones pouvant être étudiés simultanément. Cet encodage de population est le plus approprié in vivo. Les ganglions de la racine dorsale (DRG), qui abritent le soma des neurones sensoriels innervant les structures somatiques et viscérales sous le cou, sont les plus largement utilisés pour l’imagerie in vivo car ces structures sont relativement faciles d’accès. Plus récemment, cette technique a été utilisée chez la souris pour étudier les neurones sensoriels du ganglion trijumeau (TG) qui innervent les structures buccales et craniofaciales. Il existe de nombreuses raisons d’étudier la TG en plus de la DRG, y compris la longue liste de syndromes douloureux spécifiques aux structures buccales et craniofaciales qui semblent refléter des changements dans l’activité des neurones sensoriels, tels que la névralgie du trijumeau. Les souris sont les plus utilisées dans l’étude des neurones DRG et TG en raison de la disponibilité d’outils génétiques. Cependant, avec des différences de taille, de facilité de manipulation et des différences d’espèces potentiellement importantes, il y a des raisons d’étudier les neurones TG du rat plutôt que de la souris. Ainsi, nous avons développé une approche pour l’imagerie des neurones TG de rat in vivo. Nous avons injecté des chiots nouveau-nés (p2) par voie intrapéritonéale avec un AAV codant pour GCaMP6s, ce qui a entraîné une infection de >90% des neurones TG et DRG. La TG a été visualisée chez l’adulte après craniotomie et décortication, et les changements dans la fluorescence de GCaMP6s ont été surveillés dans les neurones TG après stimulation des régions mandibulaires et maxillaires du visage. Nous avons confirmé que les augmentations de fluorescence étaient provoquées par un stimulus avec un bloc nerveux périphérique. Bien que cette approche ait de nombreuses utilisations potentielles, nous l’utilisons pour caractériser la ou les sous-populations de neurones TG modifiées à la suite d’une lésion des nerfs périphériques.
La somatosensation, c’est-à-dire l’encodage neuronal des stimuli mécaniques, thermiques et chimiques qui affectent la peau ou d’autres structures corporelles, y compris les muscles, les os et les viscères, commence par l’activité des neurones afférents primaires qui innerventces structures. Les approches électrophysiologiques basées sur une seule unité ont fourni une mine d’informations sur les sous-types afférents impliqués dans ce processus ainsi que sur la façon dont leurs propriétés stimulus-réponses peuvent changer au fil du temps 1,2,3. Cependant....
Toutes les expériences impliquant l’utilisation d’animaux dans la recherche ont été réalisées conformément aux normes mises de l’avant par les National Institutes of Health et l’Association internationale pour l’étude de la douleur et ont été approuvées par le Comité institutionnel de protection et d’utilisation des animaux de l’Université de Pittsburgh (protocole #22051100). À la fin de chaque expérience, les rats ont été euthanasiés par exanguination avec perfusion cardiaque de solution saline tamponnée au phosphate (PBS), une approche approuvée par l’American Veterinary Medical Association et l’IACUC de l’Université de Pittsburgh.
....
Comme nous avons déjà eu du succès avec le sérotype AAV9 pour l’infection des neurones sensoriels du rat15, nous avons utilisé ce sérotype pour l’expression des GCaMP6 dans les neurones TG du rat. Nous avons donc d’abord cherché à évaluer l’efficacité de l’infection des neurones sensoriels par AAV9-CAG-GCaMP6s-WPRE-SV40 (AAV9-GCaMP) lorsque ce virus a été administré à des ratons nouveau-nés20. Ce virus utilise le promoteur CAG, qui entraîne et main.......
Ici, nous démontrons un moyen rapide et non invasif de générer un rat GECI pour l’imagerie du TG. Nous avons choisi un promoteur CAG pour piloter et maintenir des niveaux élevés d’expression génique. Alors que des études antérieures suggèrent que d’autres sérotypes d’AAV peuvent influencer efficacement l’expression des gènes dans les neurones DRG39, nos résultats sont cohérents avec une étude récente impliquant l’injection intrapéritonéale d’AAV chez les nouveau-nés.......
Le Dr Gold a reçu une subvention de Grunenthal pendant le développement de cette préparation. Il n’y avait pas de chevauchement entre l’objectif de l’étude de Grunenthal et la préparation décrite dans ce manuscrit. Ni l’un ni l’autre des autres auteurs n’a d’autres conflits d’intérêts potentiels à divulguer.
Nous tenons à remercier les Drs Kathy Albers et Brian Davis pour l’utilisation de leur programme Leica Microscope and Metamorph, Charles Warwick pour l’aide qu’il a apportée à la construction de notre appareil thermique Peltier, et le Dr Raymond Sekula pour son aide au dépannage de la préparation chirurgicale. Ce travail a été soutenu par des subventions des National Institutes of Health : F31NS125993 (JYG), T32NS073548 (JYG) et R01NS122784 (MSG et RS).
....Name | Company | Catalog Number | Comments |
AAV9-CAG-WPRE-GCaMP6s-SV40 | Addgene | 100844-AAV9 | AAV9-GCaMP6s virus |
ACEpromazine maleate | Covetrus | 11695-0095-5 | 10 mg/mL |
AnaSed (Xylazine) injection | AKORN Animal Health | 23076-35-9 | 20 mg/mL |
CTR5500 Electronics box | Leica | 11 888 820 | Power Supply |
Cutwell burr drill bit | Ransom & Randolph | ¼ round | |
DM 6000 FS | Leica | 11 888 928 | Base Stand |
EL6000 | Leica | EL6000 | Light source with 120 W mercury bulb |
Forceps | FST | 11252-00 | Dumont No. 05 |
Friedman rongeurs | FST | 16000-14 | 2.5 mm cup size |
Friedman-Pearson rongeurs | FST | 16021-14 | 1 mm cup size |
Heating pad (Temperature therapy pad) | STRYKER | 8002-062-022 | |
Ketamine hydrochloride | Covetrus | 1695-0703-1 | 100 mg/mL |
Plan Fluor 20x/0.40 | Leica | MRH00105 | 20x objective, 0.4 NA10.8 mm WD |
Power handle high-temp cautery pen | Bovie | HIT1 | handheld Change-A-Tip cautery pen |
Prime 95B | Photometrics | Prime 95B | CMOS Camera |
Saline | Fisher Scientific | NC0291799 | 0.9% Sterile Saline |
Scalpel blade | Fisher Scientific | 22-079-701 | size 15 disposable blade |
Spatula | BRI | 48-1460 | brain spatula |
Spring scissors | FST | 91500-09 | Student Vannas, 5 mm cutting edge |
Spring scissors | FST | 15012-12 | Noyes, 14 mm cutting edge |
STP6000 Smart touch panel | Leica | 11 501 255 | Control Panel |
Syringe | Hamilton | 80201 | 25 μL Model 1702 Luer Tip syringe |
Water heater | Adroit | HTP-1500 |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationExplorer plus d’articles
This article has been published
Video Coming Soon