Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
This protocol describes the selection of optimal plasmodesmal markers for confocal microscopy-based analyses of protein targeting to plasmodesmata during virus-plasmodesmata interactions or plasmodesmal transport.
Plasmodesmata are membranous nanopores that connect the cytoplasm of adjacent plant cells and enable the cell-to-cell trafficking of nutrients, macromolecules, as well as invading viruses. Plasmodesmata play fundamental roles in the regulation of intercellular communication, contributing to plant development, environmental responses, and interactions with viral pathogens. Discovering plasmodesmal localization of plant or viral proteins could provide useful functional information about the protein and is important for understanding the mechanisms of plant-virus interactions. To facilitate these studies, we describe a protocol for confocal microscopy-based analysis of different plasmodesmal targeting proteins to select the best plasmodesmal marker for studying the virus-plasmodesmata interactions or plasmodesmal transport. Specifically, the analyses of these events are illustrated using the cell-to-cell movement protein (MP) of the Turnip vein-clearing virus (TVCV), the Arabidopsis Plasmodesmata-Localized Protein 5 (PDLP5) and Plasmodesmata Callose-Binding Protein 1 (PDCB1). The protein plasmodesmal localization data are analyzed in parallel with the global visualization of plasmodesmata using aniline blue staining of the sampled tissues. These approaches can be easily adapted to analyze the plasmodesmal localization of any cellular or pathogen proteins in planta.
Plasmodesmata (PD) play a fundamental role in controlling plant development, environmental responses, and interactions with viral pathogens through the regulation of intercellular communication1,2. PD initially forms during cytokinesis, with hundreds of PD inserted into the new cell between the two daughter cells, thus supplying the channels for cell-to-cell communication3,4. PD is a membrane-rich structure, containing the endoplasmic reticulum (ER)-derived membrane, a trans-PD desmotubule, in the central part of the pores that are lined by the plasma ....
The details of the reagents and the equipment used in this study are listed in the Table of Materials.
1. Plant growth
To facilitate studies of PD function in plant physiology and interactions with pathogens, three simple and reliable reference proteins were developed for PD localization. Two cellular PD proteins and a pathogen-derived MP protein encoded by the plant tobamovirus TVCV were selected. The subcellular localization of these proteins was visualized using an autofluorescent reporter EGFP fused to the C-terminus of each protein. In an alternative approach, PD were visualized using aniline blue staining of the PD-associated callo.......
Any cell biological studies of plant intercellular communication and cell-to-cell transport during normal plant development and morphogenesis, as well as during plant-pathogen interactions, necessitate the detection and monitoring of the sorting of proteins-both endogenous and pathogen-encoded-to plant intercellular connections, the plasmodesmata (PD). These experiments would be substantially facilitated by using reference proteins, whether endogenous or pathogen-derived, that faithfully and consistently localize to PD, .......
The work in the VC laboratory was supported by grants from NIH (R35GM144059), NSF (MCB 1913165 and IOS 1758046), and BARD (IS-5276-20) to VC. The funders had no role in study design, data collection, and interpretation, or the decision to publish.
....Name | Company | Catalog Number | Comments |
ABT AC 1 phase motor | BRANDTECH | ABF63/4C-7RQ | |
Agrobacterium tumefaciens EHA105 | |||
Contamination control | CCI | ||
Gateway BP Clonase II Enzyme mix | Invitrogen | #11789020 | |
Gateway LR Clonase II Enzyme mix | Invitrogen | #11791020 | |
GraphPad Prism 8.0.1. | GraphPad Software Inc. | ||
Image J | National Institutes of Health and the Laboratory for Optical and Computational Instrumentation | ||
Laser scanning confocal microscope | Zeiss | LSM 900 | |
Nicotiana benthamiana | Plant species | ||
pDONR207 | Invitrogen | #12213013 | |
Q5 High-Fidelity DNA Polymerase | NEB | #M0491S |
This article has been published
Video Coming Soon