SC1 functions through dual inhibition of Ras- GAP and ERK1. We tested the function of SC1 in supporting mouse ES cell self-renewal in the absence of LIF and showed that SC1 is able to maintain self-renewal of mouse ES cell cultures.
A modified 3-D in vitro system is presented in which growth characteristics of several tumor cell lines in reconstituted basement membrane correlate with the dormant or proliferative behavior of the tumor cells at a metastatic secondary site in vivo.
The purpose of this article is to describe the use of an orthotopic glioblastoma model for chemoradiation studies. This article will go though cell processing, implanting, and radiotherapy of the mouse using an intracranial model.
Microscale thermophoresis (MST) can be widely used for determination of binding affinity without purification of the target protein from cell lysates. The protocol involves overexpression of the GFP-fused protein, cell lysis in non-denaturing conditions, and detection of MST signal in the presence of varying concentrations of the ligand.
Intravital microscopy is a powerful tool that enables imaging various biological processes in live animals. In this article, we present a detailed method for imaging the dynamics of subcellular structures, such as the secretory granules, in the salivary glands of live mice.
Here we describe cellular cytotoxicity and single round infectivity assays that allow for the rapid and accurate screening of compounds to determine their cellular cytotoxicity (CC50) and IC50 values against WT and drug resistant HIV-1.
Protocols for the study of biofilm formation in a microfluidic device that mimics porous media are discussed. The microfluidic device consists of an array of micro-pillars and biofilm formation by Pseudomonas fluorescens in this device is investigated.
Treating cervical spinal cord injury with both self-assembling peptides (SAP) and neural precursor cells (NPC), together with growth factors, is a promising approach to promote regeneration and recovery. A contusion/compression aneurysm clip rat model of cervical SCI and combined treatment involving SAP injection and NPC transplantation is established.
Tumor-initiating cells (TICs) may represent a viable therapeutic target for the treatment of ovarian cancer, a highly recurrent and fatal disease. We present a protocol for culture conditions that enrich for this highly tumorigenic population of cells.
Protocols for microbiologically induced calcite precipitation (MICP) using the bacterium Sporosarcina pasteurii are presented here. The precipitated calcium carbonate was characterized through optical microscopy and scanning electron microscopy (SEM). It is also shown that exposure to MICP increases the compressive strength of sponge.
Eliminating specific cells without damaging other cells is extremely difficult, especially in established tissue, yet there is an urgent need for a cell elimination method in the tissue engineering field. Here, we present a method for specific cell elimination from a mixed 3D cell culture using near infrared photoimmunotherapy (NIR-PIT).
We describe a method to sort single mammalian cells and to quantify the expression of up to 96 target genes of interest in each cell. This method includes the use of internal qPCR standards to enable the estimation of absolute transcript counts.
Lasers are frequently used in studies of the cellular response to DNA damage. However, they generate lesions whose spacing, frequency, and collisions with replication forks are rarely characterized. Here, we describe an approach that enables the determination of these parameters with laser localized interstrand crosslinks.
The comet assay is an efficient method to detect DNA damage including single and double-stranded DNA breaks. We describe alkaline and neutral comet assays to measure DNA damage in cancer cells to evaluate the therapeutic effect of chemotherapy.
Dormant and active cancer cell phenotypes were characterized using quantitative phase imaging. Cell proliferation, migration, and morphology assays were integrated and analyzed in one simple method.
Here, we present a protocol to infect primary human dermal fibroblast with MCPyV. The protocol includes isolation of dermal fibroblasts, preparation of MCPyV virions, virus infection, immunofluorescence staining, and fluorescence in situ hybridization. This protocol can be extended for characterizing MCPyV-host interactions and discovering other cell types infectable by MCPyV.
Here, we present protocols of high-intensity interval and moderate-intensity continuous exercise to observe the response of circulating cardiac troponin T (cTnT) concentration to acute exercise over 10 days. The information may assist with clinical interpretations of post-exercise cTnT elevation and guide the prescription of exercise.
Near-infrared photoimmunotherapy (NIR-PIT) is an emerging cancer therapeutic strategy that utilizes an antibody-photoabsorber (IR700Dye) conjugate and NIR light to destroy cancer cells. Here, we present a method to evaluate the antitumor effect of NIR-PIT in a mouse model of pleural disseminated lung cancer and malignant pleural mesothelioma using bioluminescence imaging.
This paper provides a detailed description of how to build an animal model of the anhepatic phase (liver ischemia) in rats to facilitate basic research into ischemia-reperfusion injury after liver transplantation.
Neutrophil migration relies on the rapid and continuous remodeling of the plasma membrane in response to chemoattractant and its interactions with the extracellular microenvironment. Described herein is a procedure based on Intravital Subcellular Microscopy to investigate the dynamic of membrane remodeling in neutrophils injected in the ear of anesthetized mice.
Here a protocol is presented to build a fast and non-destructive system for measuring cell or nucleus compressibility based on acoustofluidic microdevice. Changes in mechanical properties of tumor cells after epithelial-mesenchymal transition or ionizing radiation were investigated, demonstrating the application prospect of this method in scientific research and clinical practice.
Here, we describe a preclinical orthotopic mouse model for GBM, established by intracranial injection of cells derived from genetically engineered mouse model tumors. This model displays the disease hallmarks of human GBM. For translational studies, the mouse brain tumor is tracked by in vivo MRI and histopathology.
Teleoperated robotic system-assisted percutaneous transiliac-transsacral screw fixation is a feasible technique. Screw channels can be implemented with high accuracy owing to the excellent freedom of movement and stability of the robotic arms.