Method Article
긴 읽기 시퀀스는 크게 복잡 한 유전자 및 구조 변화의 특성의 어셈블리를 촉진 한다. 연속 nanopore 기반 플랫폼으로 매우 긴 시퀀스를 생성 하는 방법을 설명 합니다. 접근은 최적화 된 DNA 추출이 수정된 라이브러리 준비 인간 세포에서 kilobase 읽기 적당 한 보도 수백을 생성 하 여 다음을 채택 한다.
제 3 세대 단일 분자 DNA 시퀀싱 기술 제공 훨씬 더 이상 읽을 길이 복잡 한 유전자 및 복잡 한 구조 이체의 분석의 어셈블리를 촉진할 수 있다. Nanopore 플랫폼 직접 숨 구멍을 통해 DNA 통행에 의해 중재 현재 변화를 측정 하 여 단일 분자 시퀀싱을 수행 하 고 최소한의 자본 비용으로 kilobase (kb) 읽기의 수백을 생성할 수 있습니다. 이 플랫폼은 다양 한 응용 프로그램에 대 한 많은 연구자에 의해 채택 되었습니다. 긴 연속 읽기 길이 달성 nanopore 시퀀싱 플랫폼의 가치를 활용 하는 가장 중요 한 요소입니다. 매우 긴 읽기를 생성 하려면 특별 한 고려 DNA 파손 방지 및 생산성 시퀀싱 서식 파일을 생성 하는 효율을 얻이 필요 합니다. 여기, 우리는 매우 긴 DNA 시퀀싱 신선 또는 냉동 셀, 기계적 전단 또는 transposase 조각화, 도서관 건축에서에서 고 분자량 (HMW) DNA 추출 및 nanopore 장치에서 시퀀싱의 상세한 프로토콜을 제공 합니다. HMW DNA의 20-25 µ g에서 메서드 N50 읽기 50-70 kb 기계적 전단의 길이 달성할 수 있다 고 90-100의 transposase 길이 읽기 N50 중재 조각화 합니다. 프로토콜 구조 변형 및 게놈 어셈블리의 검색을 위한 전체 게놈 시퀀싱을 수행 하기 위해 포유류 세포에서 추출한 DNA를 적용할 수 있습니다. DNA 추출 및 효소 반응에 대 한 추가 개선 또한 읽기 길이 증가 하 고 그것의 유틸리티를 확장 합니다.
지난 10 년 동안 대규모 병렬 하 고 매우 정확 하 게 2 세대 높은 처리량 시퀀싱 기술 주도 생물 발견 및 기술 혁신1,2,3의 폭발. 기술 진보에도 불구 하 고 2 세대 플랫폼에 의해 생성 된 짧은 읽기 데이터 복잡 한 게놈 영역 해결에 효과가 및 게놈 구조 변형 (SVs), 인간에서 중요 한 역할을의 검출에 제한 됩니다. 진화와 질병4,5. 또한, 짧은 읽기 데이터 반복 변화를 확인할 수 없습니다 하 고 분별 haplotype 유전 이체6의 단계적 적합 하지 않습니다.
단일 분자 시퀀싱 제공 훨씬 더 최근 진행 길이, SVs7,,89, 전체 스펙트럼 및 제공 정확 하 고 완벽 한 복잡 한 검색을 용이 하 게 수 읽기 미생물 및 포유류 게놈6,10. Nanopore 플랫폼 직접 모11,,1213DNA 통행에 의해 중재 현재 변화를 측정 하 여 단일 분자 시퀀싱을 수행 합니다. 모든 기존 DNA 시퀀싱 화학, 달리 nanopore 시퀀싱을 생성할 수 있습니다 오래 (kilobases 수천 수만) 읽기 실시간 중 합 효소 활동에 의존 하지 않고 또는 인공 DNA 샘플의 증폭. 따라서, nanopore 긴-읽기 (NLR-seq) 낮은 복잡성 또는 반복 풍부한에서 특히 크게 게놈 및 생물 의학 분석14사전 것, 100kb 이상의 매우 긴 읽기 길이 생성 하기 위한 위대한 약속을 보유 하 고 시퀀싱 게놈15의 영역입니다.
Nanopore 시퀀싱의 독특한 기능은 잠재적인 긴 생성을 이론적인 길이 제한 없이 읽습니다. 따라서, 읽기 길이 DNA 무결성 및 시퀀싱 템플릿 품질에 의해 영향을 받는 직접 DNA의 물리적 길이에 따라 달라 집니다. 또한, 조작 및 단계, pipetting 세력 및 추출 조건 등의 수의 정도 따라 DNA의 품질이 매우 다양 합니다. 따라서, 그것은 단지 표준 DNA 추출 프로토콜 및 제조업체의 제공 된 라이브러리 공법을 적용 하 여 긴 읽기를 한 도전 이다. 이 끝으로, 우리는 강력한 개발 했습니다 매우 긴 생성 하는 방법 읽기 (kilobases 수백) 시퀀싱 데이터 수확된 셀 펠 릿에서 시작. 우리는 DNA 추출 및 라이브러리 준비 절차에서 여러 개선 채택. 우리는 DNA 저하 및 손상 시키는 불필요 한 절차를 제외 하려면 프로토콜을 간소화. 이 프로토콜은 고 분자량 (HMW)의 구성 된 DNA 추출, 매우 긴 DNA 도서관 건축 및 연속 nanopore 플랫폼에. 잘 훈련 된 분자 생물학에 대 한 일반적으로 걸리는 6 h HMW DNA 추출, 90 분 또는 도서관 건설 깎는 방법, 그리고 DNA 연속을 위한 추가 48 h 8 h의 완료에 수확 하는 세포에서. 프로토콜을 사용 하는 게놈 복잡성에 대 한 우리의 이해를 개선 하 여 인간의 질병에 게놈 변이에 새로운 통찰력을 얻을 유전체학 커뮤니티 권한을 부여 합니다.
참고: NLR seq 프로토콜 3 연속 단계로 구성: 1) 추출 높은 분자의 무게 (HMW) 게놈 DNA; 2) 매우 긴 DNA 도서관 건설, 원하는 크기로 HMW DNA의 분열 그리고 DNA 시퀀싱 어댑터의 결 찰 포함 종료; 그리고 3) nanopores (그림 1)의 배열에 어댑터 출혈 DNA의 로드.
1. HMW DNA 추출
2. 매우 긴 DNA 도서관 건축
참고: nanopore 시퀀싱 키트와 결합 하 여 두 개의 다른 기울이기 방법에 따라 매우 긴 DNA 라이브러리를 구성 하는 두 가지 방법이 있다. 기계적 전단 기반 라이브러리 라이브러리 건설에 8 h 약을 복용 하는 50-70 킬로바이트의 N50 사용 하 여 데이터를 생성 합니다. Transposase 조각화 기반 라이브러리 라이브러리 건설에 대 일 분만 복용의 90-100 kb 데이터 N50 생성 합니다. 기계적 전단 프로토콜 같은 DNA 시퀀싱 어댑터와 nanopore 흐름 셀의 품질의 동일한 버전을 사용 하 여 입력에서 높은 수익률을 제공 합니다.
3입니다. 연속 nanopore 장치에
매우 긴 DNA 시퀀싱 프로토콜 라이브러리 건설 HMW DNA를 적용합니다. 따라서, 그것은 라이브 비율 잘 경작된 한 세포를 선택 하는 중요 한 > 셀 수확 단계에서 85%. HMW DNA의 양과 질, DNA 추출에 사용 되는 셀의 크기에 영향을 미칩니다. 세포 세포의 용 해는 너무 많은 세포로 시작 하는 경우에 잘 작동 하지 않습니다. HMW DNA 강수량 고속 원심 분리 대신 손으로 부드러운 회전을 사용 하 여 수행 되기 때문에 너무 몇 가지 셀을 사용 하 여 라이브러리 건설에 대 한 충분 한 DNA을 생성 하지 않습니다. 얼음 처럼 차가운 100% 에탄올을 추가 하 고 회전 그림2에서 흰 목화 같은 침전으로 표시 됩니다 후 HMW DNA의 예입니다.
그것은 도서관 건축을 시작 하기 전에 입력 DNA의 품질을 확인 해야 합니다. 저하, 잘못 된 정량화, 오염 (예: 단백질, RNAs, 세제, 계면 활성 제, 그리고 잔여 석탄 산 또는 에탄올) 및 낮은 분자량 DNA 길이 읽고 마지막에 후속 절차에 상당한 효과 가질 수 있습니다. HMW DNA를 포함 하는 관에서 세 가지 다른 위치에서 DNA를 사용 하 여 품질 분석을 수행 하는 것이 좋습니다. UV HMW DNA에 대 한 결과 읽어에서 OD260/OD280 값 약 1.9 이며 OD260/OD230 값은 약 2.3 (그림 3AB). 이러한 비율 값은 좋은 HMW DNA 샘플에 대 한 세 가지 테스트 간에 일관. 다른 깎는 방법 입력된 DNA의 다른 볼륨을 필요 합니다. HMW DNA의 농도 필요 > 기계적 전단 필요 동안에 µ 200 ng/L > transposase 조각화에 대 한 µ 1 µ g/L. fluorometer에 의해 감지 농도 UV 읽기 보다 조금 낮습니다. 그러나, 동일한 HMW DNA 샘플의 농도의 변이 계수는 fluorometer와 UV 분석 실험을 읽고 미만 15% 필요 합니다. 기계적 전단 주사기 바늘을 통해 전달의 수 전단된 DNA의 크기에 영향을 줍니다 마지막 읽을 길이 있도록 HMW DNA를 바늘으로 적용 됩니다. 후 바늘 HMW DNA의 대부분을 위해 전단은 그림 4에서 볼 수 있듯이 50 kb 보다 큰 크기 품질 관리를 수행 하는 것이 좋습니다. 기계적 전단 방식에서 30 패스 길이 출력을 고려 최고의 시퀀싱 결과 생성.
기계적 전단 기반 라이브러리의 N50 transposase 조각화 기반 라이브러리는 90-100 킬로바이트 50-70 킬로바이트입니다. HG00733 셀 라인을 사용 하 여 4 개의 실행 결과 표 1에 표시 됩니다. 모든 4 개의 실행 100 kb 보다 긴 길이와 이상의 2300 읽기 있다. 최대 길이 transposase 조각화 기반 라이브러리에서 (455 kb 및 489 kb) 기계적 전단 기반 라이브러리 (348 kb 및 387 kb)와 비교 된 더 긴 동안 후자 더 총 읽습니다, 높은 수익률을 나타내는. 그것은 몇몇 짧은 조각을 소개 합니다 있도록 transposase 조각화 기반 라이브러리 건설 적은 단계와 짧은 준비 시간 있다. Transposase를 사용 하 여 두 개의 실행 긴 평균 길이 (> 30 kb)와 중간 길이 (> 10 kb). 또한, 데이터에서 모든 실행을 (평균 품질 평가 점수는 약 10.0, ~ 90% 기본 정확도) 일관 된 높은 품질을 보여줍니다. 총 기초의 97% 이상 인간의 참조 게놈 (hg19) Minimap216 을 사용 하 여 기본 설정으로 정렬 했다. 원시 읽기의 예상된 크기 분포는 그림 5에 나와 있습니다. 모든 실행 동안 transposase 조각화 기반 라이브러리는 매우 긴 읽기 (예: > 100 kb)의 높은 비율 50 kb 이상의 데이터의 큰 비율이 있다. 이 프로토콜은 여러 개의 인간 세포 라인 (보충 표 1)에 성공적으로 적용 되었다.
그림 1: nanopore 긴 읽기 시퀀싱 (NLR-seq) 워크플로의 도식 개요. 오렌지, 복잡 한 transposase입니다. 노란색-녹색, nanopore 어댑터입니다. 이 그림의 더 큰 버전을 보려면 여기를 클릭 하십시오.
그림 2: 페 놀-클로 프롬 적 출 방법에서 대표 DNA 강수량. 흰색 화살표 HMW DNA를 나타냅니다. 이 그림의 더 큰 버전을 보려면 여기를 클릭 하십시오.
그림 3: UV 독서에서 HMW DNA의 예제 QC 결과. 1.21.1 기계적 전단 기반 도서관 건축을 위한 준비 단계에서의 (A) HMW DNA 단계 1.21.2 transposase 라이브러리 조각화 기반 건설에서에서의 (B) HMW DNA 이 그림의 더 큰 버전을 보려면 여기를 클릭 하십시오.
그림 4: 바늘의 QC 결과 펄스 분야 젤 전기 이동 법에 의해 HMW DNA 전단. L1: 빠른 부하 1 kb DNA 사다리; L2: 빠른 로드 1 kb DNA 사다리 확장. 1-8: DNA 전단 하는 바늘을 통해 다른 지나가는 시간. 1-3, 전단; 4, 10 번; 5, 20 번; 6, 30 시간; 7, 40 번; 8, 50 번입니다. 이 품질 관리 단계는 선택 사항입니다. 이 그림의 더 큰 버전을 보려면 여기를 클릭 하십시오.
그림 5: nanopore 매우 긴 DNA 라이브러리의 크기 분포를 예상. MS, 기계적 전단 기반 라이브러리입니다. TF, transposase 조각화 기반 라이브러리 이 그림의 더 큰 버전을 보려면 여기를 클릭 하십시오.
기계 shearing_rep1 | 기계 shearing_rep2 | Transposase fragmentation_rep1 | Transposase fragmentation_rep2 | |
셀 라인 | HG00733 | HG00733 | HG00733 | HG00733 |
읽기의 N50 | 55,180 | 63,007 | 98,237 | 95,629 |
100kb 이상 읽기 수 | 2500 | 3,082 | 2,386 | 2,355 |
총 읽기 수 | 97,859 | 80,465 | 24,166 | 21,032 |
최대 길이 (bp) | 348,482 | 387,113 | 454,660 | 489,426 |
평균 길이 (bp) | 17,861 | 20,395 | 33,528 | 38,175 |
중간 길이 (bp) | 5,335 | 5,894 | 10,249 | 15,656 |
읽기의 품질을 의미 | 10.0 | 10.1 | 9.9 | 10.0 |
원시 읽기의 총 기초 | 1,747,849,822 | 1,641,058,932 | 810,229,733 | 802,886,304 |
정렬 된 읽기의 총 기초 | 1,693,300,832 | 1,607,975,925 | 791,422,077 | 778,417,627 |
총 기초 (hg19, Minimap2)의 매핑된 비율 | 96.9% | 98.0% | 97.7% | 97.0% |
활성 숨 구멍의 수 | 1225: 480, 402, 254, 89 | 1058: 480, 356, 176, 46 | 958: 452, 328, 148, 30 | 1092: 487, 367, 195, 43 |
표 1: 다른 전단 프로토콜 성능 통계 요약에서 실행 됩니다.
도서관 1 | 도서관 2 | |
셀 라인 | K562 | GM19240 |
세포 주문 정보 | ATCC, 고양이입니다. 아니요. CCL-243 | Coriell 연구소, 고양이입니다. 아니요. GM19240 |
프로토콜 | 기계적 전단 | 기계적 전단 |
읽기의 N50 | 60,063 | 55,295 |
총 읽기 수 | 193,783 | 120,807 |
중간 길이 (bp) | 1,843 | 4,688 |
평균 길이 (bp) | 9,825 | 17,408 |
최대 길이 (bp) | 548,780 | 212,338 |
원시 읽기의 총 기초 | 1,903,989,686 | 2,103,015,331 |
정렬 된 읽기의 총 기초 | 1,837,350,047 | 1,997,419,761 |
총 기초 (hg19, Minimap2)의 매핑된 비율 | 96.6% | 95.0% |
활성 숨 구멍의 수 | 1111: 482, 371, 203, 55 | 1032: 447, 333, 196, 56 |
기계적 전단 프로토콜 다른 셀 라인을 사용 하 여 두 NLR seq의 보충 표 1: 요약.
원칙적으로, nanopore 시퀀싱 길이11,,1213megabase 읽기 100 킬로바이트를 생성할 수 있다. 4 주요 요인 시퀀싱 실행 및 데이터 품질의 성능에 영향을 미칠 것입니다: 1) 활성 공 숫자와 모 공;의 활동 nanopore를 통과 하는 DNA의 속도 제어 하는 2) 모터 단백질 3) DNA 템플렛 (길이, 순도, 품질, 질량); 4) 시퀀싱 어댑터 결 찰 효율성, 입력된 샘플에서 유용한 DNA를 결정 합니다. 처음 두 가지 요소는 흐름 세포와 제조업체에서 제공 하는 시퀀싱 키트의 버전에 따라 달라 집니다. 두 번째 두 가지 요소 (HMW DNA 추출, 전단 및 결 찰)이이 프로토콜에 중요 한 단계가 있습니다.
이 프로토콜에는 인 내와 연습이 필요합니다. HMW DNA의 품질은 매우 긴 DNA 라이브러리6중요 합니다. 높은 생존 된 셀으로 시작 하는 프로토콜 (> 85% 가능한 셀 선호), 죽은 세포에서 저하 DNA를 제한. (예를 들어, 강력한 방해, 떨고, 소용돌이, 여러 pipetting, 반복 중지 및 재개) DNA에 손해를 도입할 수 있는 어떤 가혹한 과정은 피해 야 한다. 프로토콜의 디자인에 우리는 전체 DNA 추출 과정에서 pipetting 생략 합니다. 넓은 구멍 팁 pipetting 필요한 경우 도서관 건설 중 기계 전단 및 시퀀싱 후 사용할 필요가 있다. nanopores 챔버 버퍼12에서 화학 물질에 민감한 때문에, 이어야 한다 적은 잔여 오염 물질 (예를 들어, 세제, 계면 활성 제, 페 놀, 에탄올, RNAs 단백질, 등) 가능한 DNA에서. 길이 및 수율을 고려 하면 페 놀 추출 방법 지금까지 테스트 하는 여러 다른 추출 방법에 비해 최고의 그리고 가장 재현성 결과 보여 줍니다.
이 프로토콜의 생산 능력을 오래 읽기 시퀀스에 불구 하 고 몇 가지 제한이 여전히 남아 있다. 첫째,이 프로토콜 nanopore 시퀀싱 장치 간행물;의 시간에 사용할 수에 따라 최적화 되었다 따라서, 그것은 선택적 nanopore 기반 시퀀싱 화학 제한 되며 다른 유형의 긴 읽기 시퀀싱 장치에서 수행 하는 경우 최적이 될 수 있습니다. 둘째, 결과 매우 시작 물자 (조직 또는 세포)에서 추출한 DNA의 품질에 의존 합니다. 읽기 길이 시작 DNA 이미 저하 또는 손상 된 경우 손상 될 것 이다. 셋째, 여러 품질 관리 단계는 DNA 품질을 확인 하려면 프로토콜에 통합 됩니다, 비록 최종 수율과 읽기의 길이 흐름 세포에 의해 영향을 받을 수 및 활동, nanopore 시퀀싱 플랫폼의 초기 단계에서 변수를 수 있는 기 공 개발입니다.
설명 하는 프로토콜은 여기 DNA 추출에 대 한 인간의 현 탁 액 셀 라인 샘플을 사용 합니다. 우리는 바늘 전단, transposase와 설명된 결과를 내 고 시간을 HMW DNA의 비율에에서 지나가는 시간을 최적화 했습니다. 프로토콜 4 가지 방법으로 확장 될 수 있다. 첫째, 사용자가 다른 경작된 한 포유류 세포와 세포, 조직, 임상 샘플, 또는 다른 생물의 다른 금액으로 시작할 수 있습니다. 세포 배양 시간, 반응 볼륨 및 원심 분리에 더 최적화가 필요 합니다. 둘째, 그것은 매우 긴 읽기 시퀀싱에 대 한 대상 크기를 예측 하기 어렵다. 읽기 길이 예상 보다 짧은 경우에, 사용자가 기계적인 전단 기반 방법에 지나가는 시간을 조정 하거나 transposase 조각화 기반 메서드에서 transposase을 HMW DNA의 비율을 변경할 수 있습니다. 바인딩 및 차입 장시간 정리 단계 동안 HMW DNA는 높은 점성 때문에 도움이 됩니다. 셋째, 다른 nanopore 시퀀싱 장치와 하나 양과 DNA 시퀀서의 기준을 충족의 볼륨을 조정할 수 있습니다. 넷째, 시퀀싱 어댑터에 출혈 하는 DNA에만 시퀀싱 합니다. 추가로 결 찰 효율성을 개선 하기 위해, 하나의 어댑터와 리가 농도 적정 시도할 수 있습니다. 수정된 결 찰 시간 및 분자 크롤 링 에이전트 못18 등 미래에 적용할 수 있습니다. CRISPR19,20 와 함께 매우 긴 DNA 시퀀싱 프로토콜 대상 농축 시퀀싱을 위한 효과적인 도구를 제공할 수 있습니다.
저자 들은 아무 경쟁 금융 관심사 선언 합니다.
저자는 원고에 대 한 그녀의 의견에 대 한 당 주를 감사합니다. 이 간행물에 보고 된 연구 보너스 번호 P30CA034196에서 국립 보건원의 국립 암 연구소에 의해 부분적으로 지원 되었다. 내용은 전적으로 저자의 책임 이며 반드시 국립 보건원의 공식 의견을 대표 하지 않는다.
Name | Company | Catalog Number | Comments |
Reagents | |||
Absolute ethanol | Sigma-Aldrich | E7023 | |
Agencourt AMPure XPbeads | Beckman | A63881 | magnetic beads for cleanup |
BD conventional needles | Becton Dickinson | 305136 | 27G, for mechanical shearing |
BD Luer-Lok syringe | Becton Dickinson | 309628 | for mechanical shearing |
Blunt/TA Ligase Master Mix | NEB | M0367S | |
Countess Cell Counting Chamber Slides | Invitrogen | C10228 | for cell counting |
EDTA | Invitrogen | AM9261 | pH 8.0, 0.5 M, 500 mL |
Flow Cell | Oxford Nanopore Technologies | FLO-MIN106 | R9.4.1 |
HG00773 cells | Coriell Institute | HG00733 | cells used in this protocol |
Ligation Sequencing Kit 1D | Oxford Nanopore Technologies | SQK-LSK108 | nanopore ligation kit |
MaXtract High Density tubes | Qiagen | 129073 | gel tubes |
NEBNext FFPE DNA Repair Mix | NEB | M6630S | |
NEBNext Ultra II End Repair/dA-Tailing Module | NEB | M7546S | |
Nuclease-free water | Invitrogen | AM9937 | |
Phosphate-Buffered Saline, PBS | Gibco | 70011044 | 10X, pH 7.4 |
Phenol:chloroform:IAA | Invitrogen | AM9730 | |
Proteinase K | Qiagen | 19131 | 20 mg/mL |
Qubit dsDNA BR Assay Kit | Invitrogen | Q32850 | fluorometer assays for DNA quantification |
Rapid Sequencing Kit | Oxford Nanopore Technologies | SQK-RAD004 | nanopore transposase kit |
RNase A | Qiagen | 19101 | 100 mg/mL |
SDS | Invitrogen | AM9822 | 10% (wt/vol) |
Sodium chloride solution | Invitrogen | AM9759 | 5.0 M |
TE buffer | Invitrogen | AM9849 | pH 8.0 |
Tris | Invitrogen | AM9856 | pH 8.0, 1 M |
Triton X-100 solution | Sigma-Aldrich | 93443 | ~10% |
Name | Company | Catalog Number | Comments |
Equipment | |||
Bio-Rad C1000 Thermal Cycler | Bio-Rad | 1851196EDU | |
Centrifuge 5810R | Eppendorf | 22628180 | |
Countess II FL Automated Cell Counter | Life Technologies | AMQAF1000 | for cell counting |
DynaMag-2 Magnet | Life Technologies | 12321D | magnetic rack |
Eppendorf ThermoMixer | Eppendorf | 5382000023 | for incubation |
Freezer | LabRepCo | LHP-5-UFMB | |
GridION | Oxford Nanopore Technologies | GridION X5 | nanopore device used in this protocol |
HulaMixer Sample Mixer | Thermo Fisher Scientific | 15920D | rotator mixer |
MicroCentrifuge | Benchmark Scientific | C1012 | |
NanoDrop ND-1000 Spectrophotometer | Thermo Fisher Scientific | ND-1000 | for UV reading |
Pippin Pulse | Sage Science | PPI0200 | pulsed-field gel electrophoresis instrument |
Qubit 3.0 Fluorometer | Invitrogen | Q33216 | fluorometer |
Refrigerator | LabRepCo | LABHP-5-URBSS | |
Vortex-Genie 2 | Scientific Industries | SI-A236 | |
Water bath | VWR | 89501-464 |
JoVE'article의 텍스트 или 그림을 다시 사용하시려면 허가 살펴보기
허가 살펴보기This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. 판권 소유