JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Immunology and Infection

A Simple and Efficient Method to Detect Nuclear Factor Activation in Human Neutrophils by Flow Cytometry

Published: April 9th, 2013

DOI:

10.3791/50410

1Department of Biological Sciences, University of Alberta, 2División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, 3Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México

Neutrophils are the most abundant leukocytes in blood. Neutrophils possess transcriptionally regulated functions such as production of proinflammatory cytokines and inhibition of apoptosis. These functions can be studied with the method presented here, which allows detection and quantification of nuclear factors by flow cytometry in isolated nuclei

Neutrophils are the most abundant leukocytes in peripheral blood. These cells are the first to appear at sites of inflammation and infection, thus becoming the first line of defense against invading microorganisms. Neutrophils possess important antimicrobial functions such as phagocytosis, release of lytic enzymes, and production of reactive oxygen species. In addition to these important defense functions, neutrophils perform other tasks in response to infection such as production of proinflammatory cytokines and inhibition of apoptosis. Cytokines recruit other leukocytes that help clear the infection, and inhibition of apoptosis allows the neutrophil to live longer at the site of infection. These functions are regulated at the level of transcription. However, because neutrophils are short-lived cells, the study of transcriptionally regulated responses in these cells cannot be performed with conventional reporter gene methods since there are no efficient techniques for neutrophil transfection. Here, we present a simple and efficient method that allows detection and quantification of nuclear factors in isolated and immunolabeled nuclei by flow cytometry. We describe techniques to isolate pure neutrophils from human peripheral blood, stimulate these cells with anti-receptor antibodies, isolate and immunolabel nuclei, and analyze nuclei by flow cytometry. The method has been successfully used to detect NF-κB and Elk-1 nuclear factors in nuclei from neutrophils and other cell types. Thus, this method represents an option for analyzing activation of transcription factors in isolated nuclei from a variety of cell types.

Neutrophils are the most abundant leukocytes in peripheral blood 1. During inflammation and infection neutrophils are the first cells to appear at the affected site where they act as the first line of defense 2. Neutrophils possess several antimicrobial mechanisms 3 including phagocytosis, production of reactive oxygen species, release of lytic enzymes by degranulation, and production of proinflammatory cytokines 4,5. Neutrophils are short-lived cells that get rapidly activated through signaling from various cell surface receptors. Although neutrophils have been considered terminal cells due to their short life and because t....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Isolation of Neutrophils (PMN) from Human Blood

  1. Use about 20 ml human blood with heparin (10 U/ml) as anticoagulant. Blood was collected from adult healthy volunteers by venopuncture. All experiments were done under approval of the Bioethics Committee at the Instituto de Investigaciones Biomédicas - UNAM.
  2. Put 2 ml of 6% dextran T500 in PBS into a 15 ml conical centrifuge tube and add 10 ml of blood. Mix by inverting the tube two or three times and let it sit for 45 min to allow for erythro.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The purification method described here usually provides unstimulated neutrophils (PMN) with purity greater than 95% (Figure 1A). Isolated PMN can then be stimulated by crosslinking particular receptors with specific monoclonal antibodies. We have stimulated PMN through Fc receptors and integrins (Figure 1B). Once stimulated, PMN are lysed and nuclei are isolated with high yields. Nuclei are then immunolabeled for a particular nuclear factor, such as the nuclear factor κB (NF-&.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The purification method described here allows the isolation of unstimulated neutrophils (PMN) with purity greater than 95% (assessed by microscopic observation), in a short time. Sometimes neutrophils can be contaminated by erythrocytes if the latter are not lysed completely. This does not usually affect the technique, since erythrocytes and PMN can easily be distinguished as distinct cell populations by flow cytometry. Isolated PMN can then be stimulated by crosslinking particular receptors with specific monoclon.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors would like to thank Nancy Mora for her technical assistance.

This work was funded by research grants 48573-M and 168098 from Consejo Nacional de Ciencia y Tecnologia, Mexico, and by grants IN212308 and IN205311-2 from Direccion General de Asuntos del Personal Academico, Universidad Nacional Autonoma de Mexico, Mexico.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
REAGENTS
Heparin PiSA (Mexico)
Dextran T500 Pharmacosmos A/S (Holbaek, Denmark) T1-Dextran T500
Ficoll-Paque Pharmacia 17-0320-01
Sodium chloride Sigma S7653
Sodium phosphate monobasic Sigma S9638
Sodium phosphate dibasic Sigma S9390
Bovine serum albumin (BSA) Sigma A2153 Cohn Fraction V
HEPES Sigma H3375
Potassium chloride Sigma P9541
Magnesium chloride anhydrous Sigma M8266
DL-dithiothreitol (DTT) Sigma D9163
Trypan Blue (0.4 % solution) Sigma T8154
Paraformaldehyde Sigma P6148
Triton X-100 Sigma X100
Fetal bovine serum (FBS) GIBCO 10437-028
Monoclonal antibody IV.3 Medarex (Annandale, NJ) 025-1 Human-specific anti-FcRII (CD32)
Monoclonal antibody 3G8 Medarex (Annandale, NJ) 028-2 Human-specific anti-FcRIII (CD16)
Monoclonal antibody TS2/16 Dana Farber Cancer Research Institute (Boston, MA) Donated by Dr. Martin Hemler Human-specific anti-β1 integrin (CD29)
Monoclonal antibody IB4 University of California, San Francisco Donated by Dr. Eric J. Brown Human-specific anti-β2 integrin (CD18)
F(ab')2 goat anti-mouse IgG Cappel (Aurora, OH) 55468
FITC-conjugated F(ab')2 goat anti-mouse IgG Cappel (Aurora, OH) 55522
FITC-conjugated F(ab')2 goat anti-rabbit IgG Cappel (Aurora, OH) 55665
Anti-NF-κB p50 Santa Cruz Biotechnology (Santa Cruz, CA) sc-114 Rabbit polyclonal antibody
Anti-NF-κB p65 Santa Cruz Biotechnology (Santa Cruz, CA) sc-109 Rabbit polyclonal antibody
EQUIPMENT
15-ml centrifuge tube Corning 430791
50-ml centrifuge tube Corning 430291
Centrifuge, Sorvall Tabletop Dupont Instruments RT 6000D
pH-meter Corning 340
Pipetman pipette P-20 Gilson F123600
Pipetman pipette P-200 Gilson F123601
Pipetman pipette P-1000 Gilson F123602
Hemocytometer Fisher Scientific 0267110
Microscope Nikon Eclipse E600
Inverted microscope Nikon TMS
Water Bath Incubator Fisher Scientific 2IS-M
Microcentrifuge Eppendorf 5414C
Microcentrifuge Eppendorf 5418
Flow Cytometer Becton Dickinson (Franklin Lakes, NJ) FACScalibur

  1. Sendo, F., et al. Regulation of neutrophil apoptosis: its biological significance in inflammation and the immune response. Human Cell. 9, 215-222 (1996).
  2. Borregaard, N. Neutrophils, from marrow to microbes. Immunity. 33, 657-670 (2010).
  3. Naussef, W. M. How human neutrophils kill and degrade microbes. An integrated view. Immunol. Rev. 219, 88-102 (2007).
  4. Scapini, P., et al. The neutrophil as a cellular source of chemokines. Immunol. Rev. 177, 195-203 (2000).
  5. Hamilton, T., et al. Cell type- and stimulus-specific mechanisms for post-transcriptional control of neutrophil chemokine gene expression. J. Leukoc. Biol. 91, 377-383 (2012).
  6. Simon, H. U. Neutrophil apoptosis pathways and their modifications in inflammation. Immunol. Rev. 193, 101-110 (2003).
  7. Akgul, C., Moulding, D. A., Edwards, S. W. Molecular control of neutrophil apoptosis. FEBS Lett. 487, 318-322 (2001).
  8. Witko-Sarsat, V., Pederzoli-Ribeil, M., Hirsch, E., Sozzani, S., Cassatella, M. A. Regulating neutrophil apoptosis: new players enter the game. Trends Immunol. 32, 117-124 (2011).
  9. Green, D. R. Death and NF-κB in T cell activation: life at the edge. Mol. Cell. 11, 551-552 (2003).
  10. Papa, S., Zazzeroni, F., Pham, C. G., Bubici, C., Franzoso, G. Linking JNK signaling to NF-κB: a key to survival. J. Cell Sci. 117, 5197-5208 (2004).
  11. Valente, P., et al. TNF increases camptothecin-induced apoptosis by inhibition of NF-κB. Eur. J. Cancer. 39, 1468-1477 (2003).
  12. Choi, M., et al. Inhibition of NF-κB by a TAT-NEMO-binding domain peptide accelerates constitutive apoptosis and abrogates LPS-delayed neutrophil apoptosis. Blood. 102, 2259-2267 (2003).
  13. Wang, K., et al. Inhibition of neutrophil apoptosis by type 1 IFN depends on cross-talk between phosphoinositol 3-kinase, protein kinase C-d, and NF-κB signaling pathways. J. Immunol. 171, 1035-1041 (2003).
  14. Schnoor, M., et al. Efficient non-viral transfection of THP-1 cells. J. Immunol. Meth. 344, 109-115 (2009).
  15. Garcia-Garcia, E., Rosales, C. Nuclear factor activation by FcγR in human peripheral blood neutrophils detected by a novel flow cytometry-based method. J. Immunol. Meth. 320, 104-118 (2007).
  16. Garcia-Garcia, E., Nieto-Castaneda, G., Ruiz-Saldana, M., Mora, N., Rosales, C. FcγRIIA and FcγRIIIB mediate nuclear factor activation through separate signaling pathways in human neuthophils. J. Immunol. 182, 4547-4556 (2009).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved