A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here we use a polyurethane tunable nanopore integrated into a resistive pulse sensing technique to characterize nanoparticles surface chemistry via the measurement of particle translocation velocities, which can be used to determine the zeta potential of individual nanoparticles.
Nanopore technologies, known collectively as Resistive Pulse Sensors (RPS), are being used to detect, quantify and characterize proteins, molecules and nanoparticles. Tunable resistive pulse sensing (TRPS) is a relatively recent adaptation to RPS that incorporates a tunable pore that can be altered in real time. Here, we use TRPS to monitor the translocation times of DNA-modified nanoparticles as they traverse the tunable pore membrane as a function of DNA concentration and structure (i.e., single-stranded to double-stranded DNA).
TRPS is based on two Ag/AgCl electrodes, separated by an elastomeric pore membrane that establishes a stable ionic current upon an applied electric field. Unlike various optical-based particle characterization technologies, TRPS can characterize individual particles amongst a sample population, allowing for multimodal samples to be analyzed with ease. Here, we demonstrate zeta potential measurements via particle translocation velocities of known standards and apply these to sample analyte translocation times, thus resulting in measuring the zeta potential of those analytes.
As well as acquiring mean zeta potential values, the samples are all measured using a particle-by-particle perspective exhibiting more information on a given sample through sample population distributions, for example. Of such, this method demonstrates potential within sensing applications for both medical and environmental fields.
Functionalized nanoparticles are becoming increasingly popular as biosensors in both medical and environmental fields. The ability to alter a nanoparticle's surface chemistry, with DNA, for example, is proving useful for targeted drug delivery systems1 and monitoring DNA-protein interactions2-4. An increasingly common nanoparticle property being utilized in bioassays and in the delivery of therapeutics is superparamagnetism5. Superparamagnetic particles (SPPs) are extremely useful in identifying and removing specific analytes from complex mixtures and can do so with the simple use of a single magnet. Once removed, the analyte-bound particles can be characterized and analyzed fit for purpose.
Previous methods used for the detection and characterization of nanoparticles include optical techniques such as dynamic light scattering (DLS), otherwise known as photon correlation spectroscopy. Although a high throughput technique, DLS is limited to being an averaging based technique and when analyzing multimodal samples without the addition of specialist software, the larger particles will produce a much more dominant signal, leaving some of the smaller particles completely unnoticed6,7. Particle-by-particle characterization techniques are therefore much more favorable to analyze nanoparticle and functionalized nanoparticle systems.
RPS based technologies are based around applying an electric field to a sample and monitoring the transportation mechanism of the particles through a synthetic or biological nanopore. A relatively recent nanoparticle detection and characterization technique based on RPS is tunable resistive pulse sensing (TRPS)8-16. TRPS is a two-electrode system separated by an elastomeric, tunable pore membrane. A tunable pore method allows for analytes of a range of shape17 and size to be measured via their transport mechanisms through the pore. Tunable pores have previously been used for the detection of small particles (70-95 nm diameter) producing comparable results to other techniques such as transmission electron spectroscopy (TEM)10. When an electric field is applied, an ionic current is observed and as particles/molecules pass through the pore, they temporarily block the pore, causing a reduction in the current that can be defined as a 'blockade event'. Each blockade event is representative of a single particle so that each particle within a sample can be characterized individually based on the blockade magnitude, Δ, and full width half-maximum, FWHM, as well as other blockade properties. Analyzing individual particles as they pass through a nanopore is advantageous for multimodal samples as TRPS can successfully and effectively distinguish a range of particle sizes amongst a single sample. Tunable resistive pulse sensing completes size10, zeta potential12,18 and concentration15 measurements simultaneously in a single run and can therefore still differentiate samples of similar, if not the same size by their surface charge19; an advantage over alternative sizing techniques.
Zeta potential is defined as the electrostatic potential at the plane of shear20, and is calculated from particle velocities as they traverse a pore19. Zeta potential measurements of individual particles thus gives insight into the translocation mechanisms and behavior of nanoparticle systems in solution, valuable information for the future of nanoparticle assay designs for a range of applications. Particle-by-particle analysis of such nature also allows for the spread and distribution of zeta potential values amongst a sample population to be explored, allowing for more information on reaction kinetics (single-stranded to double-stranded DNA, for example) and particle stabilities in solution to be attained.
Here, we describe a technique that detects and characterizes both unmodified and DNA-modified SPP surfaces. The protocol described herein is applicable to a range of inorganic and biological nanoparticles, but we demonstrate the procedure using DNA-modified surfaces due to their wide range of applications. The technique allows the user to distinguish between single-stranded and double-stranded DNA targets on a nanoparticle surface, based on particle translocation velocities through a pore system and thus their zeta potentials.
1. Making the Phosphate Buffered Saline with Tween-20 (PBST) Buffer
2. Preparing the Carboxyl Polystyrene Particle Standards
3. Preparing Streptavidin Coated Particles
4. Preparation of Oligonucleotides
5. Addition of Capture Probe (CP) DNA to the Streptavidin Coated Particles
6. Hybridizing Complementary DNA to the CP-particles
7. TRPS Setup
8. Preparing Samples for TRPS Analysis
9. Calibrating the Nanopore for Zeta Analysis
10. Running a Sample
Figure 1. Schematic representation of the processes of magnetic purification and a TRPS measurement. A) Example of magnetic purification of sample starting with a sample containing excess, unbound capture probe DNA. B) TRPS measurement example i) Particle passing through the nanopore and ii) Blockade event produced from particle temporarily occluding ions in the pore...
The calculation for the zeta potential used a calibration based method related to work by Arjmandi et al.21. The duration of the translocation of particles as they traverse a nanopore is measured as a function of applied voltage, using an average electric field and particle velocities over the entirety of a regular conical pore. The electrophoretic mobility is the derivative of 1/T (where T is the blockade duration) with respect to voltage, multiplied by the square of the sensing zone lengt...
E.L.C.J.B. is supported by Izon Science Ltd.
The authors thank Izon Science Ltd for their support. The work was supported by the European Commission for Research (PCIG11-GA-2012-321836 Nano4Bio).
Name | Company | Catalog Number | Comments |
Phosphate buffered Saline (PBS) | Sigma Aldrich, UK | P4417 | 1 tablet dissolved in 200 mL deionised water to make buffer solution. |
Tween-20 | Sigma Aldrich, UK | P1379 | 0.05% (v/v) in PBS buffer as a surfactant |
Carboxyl polystyrene nanoparticles | Bangs Laboratories, US | CPC200 | Nominal diamter of 220 nm, raw concentration of 1E12 particles/mL, specific surface charge of 86 µeq/g (equivalent to a surface charge density of 3.2E19 C/nm^2. |
Streptavidin coated nanoparticles | Ademtech, France | 3121 | Batch had binding capacity of 4352 pmol/mg (188 nM theoretical DNA binding capacity) at a raw concentration of 1.1E11 particles/mL. |
Biotinylated oligonucleotides | Sigma Aldrich, UK | VC00001 | Supplier spec: Reverse Phase 1 purification (0.05 Scale); Biotin modification at 3' end; Lyophilised powders reconstituted to 100 µM using deionised water, and diluted as required. Sequences: CP 5'ATGGTTAAACCTCAC TACGCGTGGC[Btn]3' |
Standard olignonucleotides | Sigma Aldrich, UK | VC00001 | Supplier spec: Reverse Phase 1 purification (0.05 Scale); Lyophilised powders reconstituted to 100 µM using deionised water, and diluted as required. Sequences of DNA targets: Fully complementary - 5'GCCACGCGTAGTGAGGTTTAACCAT3', Middle binding - 5'GTAGTGAGGT3', End binding - 5'GTTTAACCAT3', Partially complementary overhanging - 5'GTGAGGTTTAACCAT TTTTTTTTTTTTTTT3'. |
Izon qNano | Izon Science, NZ | Inherent pressure on system of 47 Pa, | |
Izon Variable Pressure Module (VPM) | Izon Science, NZ | Each 'cm' of pressure is equivalent to approximately 1000 Pa. | |
Polyurethane nanopore membranes | Izon Science, NZ | NP150 | Analyte size range 60-480 nm, pore diameter of calculated to be 799 nm at a 45 mm stretch. |
Magrack 6 | GE Healthcare, UK | 28-9489-64 | |
Sonic Bath | Fisher Scientific, UK | 10692353 | 80 Watts |
Vortexer | IKA, Germany | 0003365000 | |
Rotary Wheel | Labnet International, US | H5500-230 V |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved