Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The microinjection of mouse oocytes is commonly used for both classic transgenesis (i.e., the random integration of transgenes) and CRISPR-mediated gene targeting. This protocol reviews the latest developments in microinjection, with a particular emphasis on quality control and genotyping strategies.

Abstract

The use of genetically modified mice has significantly contributed to studies on both physiological and pathological in vivo processes. The pronuclear injection of DNA expression constructs into fertilized oocytes remains the most commonly used technique to generate transgenic mice for overexpression. With the introduction of CRISPR technology for gene targeting, pronuclear injection into fertilized oocytes has been extended to the generation of both knockout and knockin mice. This work describes the preparation of DNA for injection and the generation of CRISPR guides for gene targeting, with a particular emphasis on quality control. The genotyping procedures required for the identification of potential founders are critical. Innovative genotyping strategies that take advantage of the "multiplexing" capabilities of CRISPR are presented herein. Surgical procedures are also outlined. Together, the steps of the protocol will allow for the generation of genetically modified mice and for the subsequent establishment of mouse colonies for a plethora of research fields, including immunology, neuroscience, cancer, physiology, development, and others.

Introduction

Animal models, both in vertebrates and invertebrates, have been instrumental to examining the pathophysiology of human conditions such as Alzheimer's disease1,2. They are also invaluable tools to search for disease modifiers and to ultimately develop novel treatment strategies in the hope of a cure. Although each model has intrinsic limitations, the use of animals as entire systemic models is vital to biomedical research. This is because the metabolic and complex physiological environment cannot be entirely simulated in tissue culture.

To date, the mouse remains the most common ....

Protocol

All procedures have been approved by the University of New South Wales Animals Care and Ethics Committee.

1. Preparation of the Transgene (Random Integration)

  1. Analytical agarose gel electrophoresis.
    1. Digest the plasmid to excise the transgene using appropriate enzymes (1 h incubation) or fast-digest enzymes (15 to 30 min incubation) in a thermocycler following the manufacturer's recommendations (see Figure 2A and its leg.......

Representative Results

Below, the workflows for microinjection in the case of random integration and CRISPR-mediated gene targeting are described (Figure 1).

figure-representative results-284
Figure 1: Typical Workflow for the Generation of Genetically Modified Mice. For random integration, the purified transgene is injected into the pronucleus of f.......

Discussion

Critical steps within the protocol

The generation of genetically modified mice is known to be technically challenging. However, the protocol presented here is an optimized and simplified method that allows one to master and troubleshoot the technique in record time. There are two steps necessary for the successful completion of the technique. First, the synthesis of linear DNA templates (for the synthesis of sgRNAs) can be achieved without magnesium chloride (MgCl2). However, it is hig.......

Acknowledgements

The authors thank the staff of the animal facility (BRC) for their ongoing support. This work was funded by the National Health and Medical Research Council and the Australian Research Council.

....

Materials

NameCompanyCatalog NumberComments
Micropipette 0.1-2.5 ulEppendorf4920000016
Micropipette 2-20 ulEppendorf4920000040
Micropipette 20-200 ulEppendorf4920000067
Micropipette 100-1000 ulEppendorf4920000083
Molecular weight marker BiolineBIO-33025HyperLadder 1kb
Molecular weight marker BiolineBIO-33056HyperLadder 100 bp
AgaroseBiolineBIO-41025
EDTA bufferSigma-Aldrich9329610x - Dilute to 1x
Ethidium bromideThermo Fisher Scientific15585011
SYBR Safe gel stainInvitrogenS33102
Gel extraction kitQiagen28706
PCR purification kit (Qiaquick)Qiagen28106
Vacuum system (Manifold)PromegaA7231
Nuclease-free microinjection buffer MilliporeMR-095-10F
Ultrafree-MC microcentrifuge filter MilliporeUFC30GV00
Cas9 mRNASigma-AldrichCAS9MRNA
CRISPR expressing plasmid (px330)Addgene42230
Nuclease free waterSigma-AldrichW4502
Phusion polymeraseNew England BiolabsM0530L
T7 Quick High Yield RNA kitNew England BiolabsE2050S
RNA purification spin columns (NucAway)Thermo Fisher ScientificAM10070
ssOligosSigma-AldrichOLIGO STANDARD
Donor plasmidThermo Fisher ScientificGeneArt
HyaluronidaseSigma-AldrichH3884
KSOMaa embryo culture mediumZenith Biotech ZEKS-100
Mineral oilZenith Biotech ZSCO-100
M2 MediumSigma-AldrichM7167
Cytochalasin BSigma-AldrichC6762
MouthpieceSigma-AldrichA5177
Glass microcapillariesSutter InstrumentBF100-78-10
Proteinase KApplichemA3830.0100
Dumont #5 forcepsFine Science Tools 91150-20
Iris scissorsFine Science Tools 91460-11
Vessel clampFine Science Tools 18374-43
Wound clips Fine Science Tools 12040-01
Clips applier Fine Science Tools 12018-12
Micro-scissors Fine Science Tools 15000-03
CauterizerFine Science Tools 18000-00
Non-absorbable surgical sutures (Ethilon 3-0)Ethicon1691H
5% CO2 incubatorMG ScientificGalaxy 14S
SpectrophotometerThermo Fisher ScientificNanodrop 2000c
ThermocyclerEppendorf6321 000.515
Electrophoresis set upBioRad1640300
UV TransilluminatorBioRad1708110EDU
ThermocyclerEppendorf6334000069
Stereoscopic microscopeOlympusSZX7
Inverted microscopeOlympusIX71
2x MicromanipulatorsEppendorf5188000.012
Oocytes manipulatorEppendorf5176000.025
Microinjector (Femtojet)Eppendorf5247000.013
Mice C57BL/6J strainAustralian BioResourcesC57BL/6JAusb 

References

Explore More Articles

AI generated MiceCRISPR Cas9 Gene EditingOocyte MicroinjectionTransgenic Mouse ProductionRNA SynthesisIn Vitro TranscriptionDNA Purification

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved