JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

A flow cytometry-based cellular binding assay is described that is primarily used as a screening tool to identify compounds that inhibit the binding of a fluorescently labeled CXC chemokine ligand 12 (CXCL12) to the CXC chemokine receptor 4 (CXCR4).

Abstract

Pharmacological targeting of G protein-coupled receptors (GPCRs) is of great importance to human health, as dysfunctional GPCR-mediated signaling contributes to the progression of many diseases. The ligand/receptor pair CXC chemokine ligand 12 (CXCL12)/CXC chemokine receptor 4 (CXCR4) has raised significant clinical interest, for instance as a potential target for the treatment of cancer and inflammatory diseases. Small molecules as well as therapeutic antibodies that specifically target CXCR4 and inhibit the receptor's function are therefore considered to be valuable pharmacological tools. Here, a flow cytometry-based cellular assay that allows identification of compounds (e.g., small molecules) that abrogate CXCL12 binding to CXCR4, is described. Essentially, the assay relies on the competition for receptor binding between a fixed amount of fluorescently labeled CXCL12, the natural chemokine agonist for CXCR4, and unlabeled compounds. Hence, the undesirable use of radioactively labeled probes is avoided in this assay. In addition, living cells are used as the source of receptor (CXCR4) instead of cell membrane preparations. This allows easy adaptation of the assay to a plate format, which increases the throughput. This assay has been shown to be a valuable generic drug discovery assay to identify CXCR4-targeting compounds. The protocol can likely be adapted to other GPCRs, at least if fluorescently labeled ligands are available or can be generated. Prior knowledge concerning the intracellular signaling pathways that are induced upon activation of these GPCRs, is not required.

Introduction

G protein-coupled receptors (GPCRs) are cell surface proteins that can be activated by extracellular ligands (e.g., peptides, protein hormones, amines), thereby regulating many physiological and developmental processes1. When an agonist occupies its GPCR binding pocket, the induced conformational change in the receptor protein promotes the binding of intracellular receptor-associated heterotrimeric G proteins, consisting of Gα-GDP and Gβγ subunits. The subsequent exchange of GTP for GDP on the Gα subunit results in the dissociation of the G protein subunits (Gα-GTP and Gβγ) that, in turn, will further initiate downstream signaling pathways2,3. When the Gα-GTP becomes hydrolyzed, re-association of the Gα-GDP and Gβγ subunits will convert the G protein back into its resting state3,4. Distinct types of G proteins exist (Gs, Gi/o, Gq, G12/13), which are categorized based on sequence similarity with the Gα subunit5. All of these G proteins induce defined intracellular signaling pathways that underlie the biological response to receptor activation. Subsequent to receptor activation, GPCR kinases (GRKs) phosphorylate the intracellular tail of GPCRs, thereby promoting interaction with β-arrestins. This process leads to the termination of G protein signaling, receptor desensitization and internalization6. β-arrestins are also part of multi-molecular complexes that trigger signaling cascades independent of G protein signaling7.

GPCRs are amongst the most validated molecular targets for therapeutic intervention, as deregulated GPCR-mediated signaling, for instance due to gain-of-function mutations in the receptor gene or receptor overexpression, contributes to the etiology of many human diseases8. Therefore, GPCRs represent one of the most important classes of drug targets investigated by the pharmaceutical industry8,9,10. A notable example of a clinically relevant GPCR is the CXC chemokine receptor 4 (CXCR4), which can be activated by a sole natural ligand, the CXC chemokine ligand 12 (CXCL12)11. Due to its established role as a major co-receptor for human immunodeficiency virus 1 (HIV-1) entry and infection in cluster of differentiation 4 (CD4) positive T-lymphocytes12, CXCR4 was first investigated as an antiviral drug target. CXCL12-CXCR4 interaction in the bone marrow further regulates the retention and homing of stem and progenitor cells13. Also, given its involvement in many aspects of cancer biology (e.g., tumor cell survival, metastasis, tumor-related angiogenesis)14 and several other human diseases (e.g., inflammatory diseases)15, CXCR4 raised significant interest as a promising target for drug discovery. AMD3100, a small molecule that specifically targets CXCR4, was initially discovered as an anti-HIV drug candidate16 and is still one of the most potent CXCR4 antagonists described to date17. Its development as an antiviral drug was, however, discontinued18. Currently this molecule is used as a stem cell mobilization agent during the treatment of multiple myeloma and lymphoma patients18. Several other chemically unrelated small molecules and biologics that inhibit CXCR4 function with varying potency have been described19.

Receptor binding methods are valuable tools in pharmacology that allow the identification of compounds (e.g., small molecules) that directly interact with the GPCR of interest. In order to perform binding studies, there is no need for prior knowledge concerning the intracellular signaling properties or functionality of a given GPCR. Although this can be considered to be an advantage, it implies that compounds for which receptor binding can be demonstrated need to be further characterized by evaluating their potential agonistic or antagonistic activity. This activity can be evaluated using pharmacological or biological assays related to the GPCR under study. Dependent on their activity profile, receptor binding molecules might then potentially evolve to become novel lead compounds for investigation in pre-clinical and clinical studies. Molecules that specifically bind to a receptor with high affinity can also serve as scaffolds to generate therapeutic or diagnostic tools, for instance by radiolabeling them for noninvasive in vivo imaging of tumor cells20, or as potential vehicles for targeted delivery of therapeutics21. In case of CXCR4, in vivo imaging of tumor cells has already been demonstrated using mouse models wherein labeled CXCR4-targeting molecules allowed the visualization of human cancer xenografts20,22,23.

In this report, we describe a detailed protocol for a competition binding assay that enables the identification of small molecules and biologics that directly interfere with agonist (CXCL12) binding to CXCR4. The basic principle of the assay is the competition between a fixed amount of fluorescently labeled ligand (CXCL12AF647, see Table of Materials and Reagents) and unlabeled compounds for binding to the receptor protein17,24. The specific fluorescent signal from labeled ligand bound to single cells expressing CXCR4 is then analyzed by flow cytometry. This fluorescent signal will be reduced when unlabeled small molecules disrupt the interaction between CXCL12AF647 and CXCR4. The assay uses non-manipulated living cells that endogenously express CXCR4 (i.e., Jurkat cells). Hence, no cell membrane preparation is required, which makes the assay convenient, fast and compatible with increased throughput. Since a fluorescently labeled ligand is used, radioactivity is avoided.

Because CXCL12 is the natural agonist for CXCR4, small molecule compounds that interfere with CXCL12AF647 binding in the assay are likely to interact with the orthosteric receptor binding site (i.e., the binding site occupied by the natural agonist). Molecules that would interact with receptor binding sites topographically distinct from the orthosteric binding site remain undetected, if they do not influence binding of CXCL12. For instance, positive and negative allosteric modulators, an important and emerging category of GPCR targeting molecules acting on allosteric binding sites25, will potentially not be picked up with this assay. In addition, whether the compounds identified with this binding assay function as receptor antagonists or as agonists cannot be derived. Investigation of the identified compounds in additional pharmacological or functional receptor-related assays will thus be required. These assays might include (a combination of) cellular fluorescence- or luminescence-based assays for the detection of second messengers (e.g., Ca2+, cyclic adenosine monophosphate (cAMP)), phenotypic or biological assays and β-arrestin recruitment assays, the choice of which depends on the specific signaling properties of the GPCR under study. Hence, the competitive binding assay described herein mainly serves as an initial screening assay that needs to be complemented with other cell-based assays to enable an in-depth characterization of compounds with receptor binding potency.

Protocol

1. Maintenance of Cell Culture

NOTE: All steps described under 1 and 2 are carried out under sterile conditions in a laminar flow cabinet.

  1. Grow cells in T75 culture flasks at 37 °C and 5% CO2 in a humidified incubator.
    NOTE: In this assay, Jurkat cells (i.e., human leukemic T lymphocyte cells that endogenously express CXCR417) are used. Expression of CXCR4 at the cell surface should be evaluated throughout cell culturing by means of flow cytometry. A description of the flow cytometry procedure and reagents to determine receptor expression levels at the cell surface is, however, not within the scope of this protocol, but has been described previously17.
  2. Let Jurkat cells grow in suspension until they reach 80 - 85% confluency. Before passaging the cells to a novel flask, allow all reagents to reach room temperature (RT).
  3. Add 20 mL of fresh complete growth medium (RPMI-1640 medium, 10% fetal bovine serum (FBS), 2 mM glutamine) to a novel T75 culture flask.
  4. Add 5 mL of Jurkat cell suspension from the original T75 flask (containing 25 mL of cell suspension) to the novel T75 culture flask. Incubate at 37 °C and 5% CO2 in a humidified incubator.

2. Preparation of CXCL12, Assay Buffer, and Jurkat Cells for the Competition Binding Assay.

  1. Prepare a stock solution of CXCL12AF647 (20 µg/mL; see Table of Materials and Reagents) by dissolving the lyophilized reagent (stored at -80 °C, in the dark) in ultrapure water supplemented with 0.01% (volume/volume) of Polysorbate 20. Store single use aliquots from this stock solution at -80 °C, protected from light.
  2. Prepare assay buffer by adding 40 mL HEPES (1 M, 20 mM final concentration) to 200 mL Hank's Balanced Salt Solution (HBSS, 10x, without phenol red and without sodium bicarbonate, 1x final concentration). Add ultrapure water to obtain a final volume of 2 L. Add 4 g (0.2% weight/volume) bovine serum albumin (BSA), and dissolve the BSA via magnetic stirring. Finally, adjust the pH to 7.4 (use NaOH for this) and filter the solution through 0.2 µm pores (see Table of Materials and Reagents) using a vacuum manifold.
    NOTE: This assay buffer will be used in all further steps of the protocol.
  3. Count the number and the viability of the cells. For this, take a sample of the cell suspension and dilute it in phosphate buffered saline (PBS).
    NOTE: We routinely use an automated cell viability analyzer (see Table of Materials and Reagents) capable of counting cell suspensions at varying concentrations. For cell counting, dilute 0.5 mL of cell suspension in 1.5 mL PBS (other dilutions, e.g., 0.1 mL in 1.9 mL PBS, are also possible). The use of this method, which is based on the trypan blue dye exclusion method, has been described previously26. Several other devices are commercially available for counting cell number and viability that should work equally well.
  4. Collect the desired number of cells (i.e., ~24 x 106 cells to run the assay with one complete 96-well plate) in a sterile 50 mL tube by centrifugation (see Table of Materials and Reagents for the type of centrifuge used) at 400 x g for 5 min at RT.
  5. Gently pour off the supernatant without disturbing the cell pellet. Add fresh assay buffer (e.g., 20 mL) and resuspend the cells by gently pipetting up and down.
  6. Centrifuge the cells again at 400 x g for 5 min at RT.
  7. Pour off the supernatant again and resuspend the cell pellet in fresh assay buffer to obtain a density of 5 x 106 cells/mL.

3. Competition Binding Assay

NOTE: The actual competition binding assay is performed at RT and can be performed under non-sterile conditions.

  1. Dilute the compounds under investigation in assay buffer (see 2.2) to obtain the desired concentration. Either prepare a fixed concentration of compound for initial screening (e.g., 10 µM final concentration) or, alternatively, a serial dilution series of concentrations for more detailed characterization of the compounds (e.g., a 1/3, 1/4 or 1/5 dilution series starting at 1 µM, final concentration). Keep in mind that the compound solution will ultimately become 2x diluted in the assay; therefore, prepare a 2x concentrated solution.
  2. Dispense 100 µL of compound solution (2x concentrated) into a clear 96-well round bottom plate (see Table of Materials and Reagents) according to a pre-defined experimental lay out (e.g., Figure 1C).
    NOTE: At this stage, negative and positive control samples are included in the assay. In the negative control sample, 100 µL of assay buffer is added instead of compound to the wells of the 96-well plate. For the positive control sample, assay buffer is also added during this step. See also Figure 1C for a typical experimental layout in which a dilution series of several compounds is tested.
  3. Add 50 µL of cell suspension (see 2.7; 0.25 x 106 cells) from a reagent reservoir into the 96-well plate using a multichannel pipette. Incubate the plate for 15 min at RT in the dark.
  4. Add 50 µL of fluorescently labeled CXCL12 (i.e., 100 ng/mL of CXCL12AF647 in assay buffer, 4x concentrated, 25 ng/mL final concentration) from a similar reagent reservoir to the wells of the 96-well plate. Incubate for 30 min at RT in the dark.
    NOTE: For the negative control samples, add assay buffer instead. Hence, the fluorescent signal detected in the negative control samples will correspond to the autofluorescent background signal (Figure 1A). For the positive control samples, add 50 µL/well of CXCL12AF647. The positive control samples will yield the maximal fluorescence signal detected, since no potential inhibition by pre-incubation with compounds was included (Figure 1A).
  5. Centrifuge the 96-well plate at 400 x g for 5 min at RT. Remove the supernatant from the pelleted cells by flipping over the plate. Dry the plate on a tissue.
  6. Add 200 µL of fresh assay buffer from a reagent reservoir to the wells using a multichannel pipette. Immediately proceed.
  7. Centrifuge the plate again for 5 min at 400 x g at RT. Remove the supernatant by flipping over the plate and again dry it on tissue.
  8. Gently resuspend the cell pellet in 200 µL of 1% paraformaldehyde dissolved in PBS. This step will fix the cells.
  9. Continue the protocol immediately with the quantification of the fluorescence by flow cytometry.

4. Analysis of the samples by flow cytometry

CXCL12AF647 stained and fixated cells are now ready to be analyzed using flow cytometry. Several types of flow cytometers can be used, but they need to be equipped with the correct laser (i.e., a red laser, excitation range ~630 nm) for excitation and suitable filters for fluorophore detection (emission filters ~660 nm). They need to be capable of handling samples in a 96-well plate format. Examples of suitable flow cytometry devices are given in the Table of Materials and Reagents.

  1. Start up the device and open the corresponding software (see Table of Materials and Reagents).
  2. Select the following cellular parameters to be visualized in a dot blot format: forward scatter (FSC), side scatter (SSC) and the fluorophore (CXCL12AF647) detection channel.
    NOTE: With the FSC parameter, cells are discriminated based on their size, since the detected light absorption is proportional to the cell's diameter. The SSC parameter, measuring light scattering at a 90° angle, provides information about the granularity of the cells.
  3. Choose one sample (e.g., a negative control sample) to perform gating of a defined homogenous cell population based on the FSC and SSC parameters.
    1. Select automatic injection of ~100 µL of fixated cells from this negative control sample into the flow cytometer.Select the option "mixing" before injection and use a sample flow rate of 1.5 µL/s.
    2. Run this sample by selecting "Acquire Data." The FSC and SSC parameters for this sample will now appear on the screen.
    3. Select the software's gating tool. Based on the FSC and SSC dot blot visualization, pre-define a homogenous and viable cell population by gating. To do so, create a polygon (using the software's gating tool) that includes the homogenously distributed single cells ("events") based on these two dimensions.
      NOTE: The gating procedure aims to define a homogenous and viable cell population that will be used for further analysis. Gating relies on the assumption that the majority of viable cells will form a homogenous cell population based on the FSC and SSC parameters. By performing this step, cellular debris, dead cells, and cell aggregates can largely be excluded from further analysis. An illustration of the gating process is given in Figure 1B.
  4. Select to analyze 20,000 "events" (i.e., single cells) per sample.
    NOTE: This means that for each sample, 20,000 cells that fall within the pre-defined gate will eventually be analyzed. Data acquisition for each sample will continue until this number of events is analyzed.
  5. Start the run (select "Record Data"). The flow cytometry device will now analyze all samples one-by-one by recording the mean fluorescence intensity (MFI) for each sample. This MFI corresponds to the mean fluorescent signal corresponding to the 20,000 cells that fall within the pre-defined gate.

5. Data analysis

Use the MFI obtained for each sample to perform all further calculations. Analysis of the flow cytometry data can be performed by several commercially available software packages (see Table of Materials and Reagents).

  1. To determine the percentage inhibition of the fluorescent binding signal, as a result of compound pre-incubation, apply the following formula:
    figure-protocol-10883
    Where:
    MFIExp = the MFI of the experimental (= compound-treated) sample
    MFIPC = the MFI of the positive control
    MFINC = the MFI of the negative control
  2. To determine the IC50 value of a compound (i.e., the concentration of compound that can reduce the fluorescent binding signal by 50%), apply the following formula:
    figure-protocol-11392
    Where:
    Logconc.2 = the log of a concentration of compound that results in less than 50% inhibition of the difference between the MFI value of the PC and NC
    Logconc.1 = the log of a concentration of compound that results in more than 50% inhibition of the difference between the MFI value of the PC and NC
    NOTE: Alternatively, in case of highly active compounds, a dose-response curve covering several logs of magnitude can be generated based on the MFI corresponding to each tested concentration of compound. By applying non-linear regression curve fitting using appropriate software (see Table of Materials and Reagents), IC50 values can then be deduced from the generated curves. An example of this analysis approach is shown in Figure 3.

Results

The general workflow of the binding assay is presented in Figure 1A. An illustration of the type of flow cytometry data obtained for different sample types in a standard experiment (i.e., negative control, positive control, and experimental sample) is depicted in Figure 1B, and a possible plate layout to perform the assay in a 96-well plate format is given in Figure 1C. Incubation of Jurkat ...

Discussion

Compared to other types of binding assays (i.e., saturation binding and kinetic binding experiments), competition binding assays are best suited for screening purposes. Indeed, they allow evaluation of large batches of unlabeled compounds, for instance small molecules, by scoring their capability to interfere with the binding of a fixed amount of a labeled receptor ligand. Compounds that bind to other receptor sites than the labeled ligand might remain undetected in the assay. Although the competition bindi...

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Eric Fonteyn for excellent technical assistance. This work has been supported by the KU Leuven (grant no. PF/10/018), Fonds voor Wetenschappelijk Onderzoek (FWO, grant no. G.485.08) and the Fondation Dormeur Vaduz.

Materials

NameCompanyCatalog NumberComments
BD FACSCanto IIBecton DickinsonNot applicableFlow cytometry device
BD FACSDIVA Software
BD FACSArrayBecton DickinsonNot applicableFlow cytometry device
BD FACSArray System Software
Graphpad PrismGraphpadsoftware package used for nonlinear regression analysis in Figure 2 and Figure 3
FlowJoFlowJo is now a wholly owned subsidiary of BD.
Vi-CELLBeckman CoulterNot applicablecell viability analyzer
Sigma 3-18 KSSigmaNot applicablecentrifuge
AMD3100SigmaA5602-5mgspecific CXCR4 antagonist
MaravirocPfizerantiretroviral drug, CCR5 antagonist, available for research at Selleckchem (cat#S2003), Sigma (cat#PZ0002)
h-SDF1a (AF647)ALMACCAF-11-B-01fluorescently labeled CXCL12, CXCL12AF647
Fetal Bovine Serum (FBS)Gibco (Life Technologies)10270-106
Bovine Serum Albumin (BSA)SigmaA1933-25G
HBSS (10x), calcium, magnesium, no phenol redGibco (Life Technologies)14065-049
HEPES (1M)Gibco (Life Technologies)15630-056
Dulbecco's Phosphate Buffered Saline (DPBS)Gibco (Life Technologies)14190-094
Jurkat cellsATCC
Reagent reservoir PPSigmaBR703411
Rapid flow filter: 0.2 µm aPESThermo Scientific566-0020
Sterilin microtiter plate, 96-well, U bottom, clearThermo Scientific611U96
Falcon tubes, 50mlGreiner Bio-One227 261
Tissue culture flask (T75)Corning353024

References

  1. Fredriksson, R., Lagerstrom, M. C., Lundin, L. G., Schioth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 63, 1256-1272 (2003).
  2. Milligan, G., Kostenis, E. Heterotrimeric G-proteins: A short history. Br J Pharmacol. 147 Suppl 1, S46-S55 (2006).
  3. Oldham, W. M., Hamm, H. E. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol. 9, 60-71 (2008).
  4. Tuteja, N. Signaling through G protein coupled receptors. Plant Signal Behav. 4, 942-947 (2009).
  5. Neves, S. R., Ram, P. T., Iyengar, R. G protein pathways. Science. 296, 1636-1639 (2002).
  6. Gurevich, E. V., Tesmer, J. J., Mushegian, A., Gurevich, V. V. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther. 133, 40-69 (2012).
  7. Smith, J. S., Rajagopal, S. The beta-arrestins: Multifunctional regulators of G protein-coupled receptors. J Biol Chem. 291, 8969-8977 (2016).
  8. Pierce, K. L., Premont, R. T., Lefkowitz, R. J. Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 3, 639-650 (2002).
  9. Hopkins, A. L., Groom, C. R. The druggable genome. Nat Rev Drug Discov. 1, 727-730 (2002).
  10. Lappano, R., Maggiolini, M. G protein-coupled receptors: Novel targets for drug discovery in cancer. Nat Rev Drug Discov. 10, 47-60 (2011).
  11. Chatterjee, S., Behnam Azad, ., Nimmagadda, B., S, The intricate role of CXCR4 in cancer. Adv Cancer Res. 124, 31-82 (2014).
  12. Bleul, C. C., Farzan, M., Choe, H., Parolin, C., Clark-Lewis, I., Sodroski, J., Springer, T. A. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature. 382, 829-833 (1996).
  13. Flomenberg, N., DiPersio, J., Calandra, G. Role of CXCR4 chemokine receptor blockade using AMD3100 for mobilization of autologous hematopoietic progenitor cells. Acta Haematol. 114, 198-205 (2005).
  14. Domanska, U. M., Kruizinga, R. C., Nagengast, W. B., Timmer-Bosscha, H., Huls, G., de Vries, E. G., Walenkamp, A. M. A review on CXCR4/CXCL12 axis in oncology: No place to hide. Eur J Cancer. 49, 219-230 (2013).
  15. Tsou, L. K., Huang, Y. H., Song, J. S., Ke, Y. Y., Huang, J. K., Shia, K. S. Harnessing CXCR4 antagonists in stem cell mobilization, HIV infection, ischemic diseases, and oncology. Med Res Rev. , (2017).
  16. Schols, D., Struyf, S., Van Damme, J., Este, J. A., Henson, G., De Clercq, E. Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J Exp Med. 186, 1383-1388 (1997).
  17. Van Hout, A., D'Huys, T., Oeyen, M., Schols, D., Van Loy, T. Comparison of cell-based assays for the identification and evaluation of competitive CXCR4 inhibitors. PLoS One. 12, e0176057 (2017).
  18. De Clercq, E. The AMD3100 story: the path to the discovery of a stem cell mobilizer (Mozobil). Biochem Pharmacol. 77, 1655-1664 (2009).
  19. Debnath, B., Xu, S., Grande, F., Garofalo, A., Neamati, N. Small molecule inhibitors of CXCR4. Theranostics. 3, 47-75 (2013).
  20. Woodard, L. E., Nimmagadda, S. CXCR4-based imaging agents. J Nucl Med. 52, 1665-1669 (2011).
  21. Wang, Y., Xie, Y., Oupicky, D. Potential of CXCR4/CXCL12 Chemokine Axis in Cancer Drug Delivery. Curr Pharmacol Rep. 2, 1-10 (2016).
  22. Nimmagadda, S., Pullambhatla, M., Stone, K., Green, G., Bhujwalla, Z. M., Pomper, M. G. Molecular imaging of CXCR4 receptor expression in human cancer xenografts with [64Cu]AMD3100 positron emission tomography. Cancer Res. 70, 3935-3944 (2010).
  23. De Silva, R. A., Peyre, K., Pullambhatla, M., Fox, J. J., Pomper, M. G., Nimmagadda, S. Imaging CXCR4 expression in human cancer xenografts: evaluation of monocyclam 64Cu-AMD3465. J Nucl Med. 52, 986-993 (2011).
  24. Hatse, S., Princen, K., Liekens, S., Vermeire, K., De Clercq, E., Schols, D. Fluorescent CXCL12AF647 as a novel probe for nonradioactive CXCL12/CXCR4 cellular interaction studies. Cytometry A. 61, 178-188 (2004).
  25. Wootten, D., Christopoulos, A., Sexton, P. M. Emerging paradigms in GPCR allostery: implications for drug discovery. Nat Rev Drug Discov. 12, 630-644 (2013).
  26. Louis, K. S., Siegel, A. C. Cell viability analysis using trypan blue: manual and automated methods. Methods Mol Biol. 740, 7-12 (2011).
  27. Perry, C. M. Maraviroc: a review of its use in the management of CCR5-tropic HIV-1 infection. Drugs. 70, 1189-1213 (2010).
  28. Moyle, G., DeJesus, E., Boffito, M., Wong, R. S., Gibney, C., Badel, K., MacFarland, R., Calandra, G., Bridger, G., Becker, S. Proof of activity with AMD11070, an orally bioavailable inhibitor of CXCR4-tropic HIV type 1. Clin Infect Dis. 48, 798-805 (2009).
  29. Balabanian, K., Lagane, B., Infantino, S., Chow, K. Y., Harriague, J., Moepps, B., Arenzana-Seisdedos, F., Thelen, M., Bachelerie, F. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem. 280, 35760-35766 (2005).
  30. Burns, J. M., Summers, B. C., Wang, Y., Melikian, A., Berahovich, R., Miao, Z., Penfold, M. E., Sunshine, M. J., Littman, D. R., Kuo, C. J., Wei, K., McMaster, B. E., Wright, K., Howard, M. C., Schall, T. J. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med. 203, 2201-2213 (2006).
  31. Stoddart, L. A., Kilpatrick, L. E., Briddon, S. J., Hill, S. J. Probing the pharmacology of G protein-coupled receptors with fluorescent ligands. Neuropharmacology. 98, 48-57 (2015).
  32. Vernall, A. J., Hill, S. J., Kellam, B. The evolving small-molecule fluorescent-conjugate toolbox for Class A GPCRs. Br J Pharmacol. 171, 1073-1084 (2014).
  33. Stoddart, L. A., White, C. W., Nguyen, K., Hill, S. J., Pfleger, K. D. Fluorescence- and bioluminescence-based approaches to study GPCR ligand binding. Br J Pharmacol. 173, 3028-3037 (2016).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Flow CytometryBinding AssayCXCR4CXCL12G protein Coupled ReceptorFluorescent LigandCompetition BindingDrug Discovery

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved