JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol provides an efficient and low-cost method to detect Zika virus or control targets in human urine and serum samples or in mosquitoes by reverse transcription loop-mediated isothermal amplification (RT-LAMP). This method does not require RNA isolation and can be done within 30 min.

Abstract

Infection with Zika virus (ZIKV) can be asymptomatic in adults, however, infection during pregnancy can lead to miscarriage and severe neurological birth defects. The goal of this protocol is to quickly detect ZIKV in both human and mosquito samples. The current gold standard for ZIKV detection is quantitative reverse transcription PCR (qRT-PCR); reverse transcription loop-mediated isothermal amplification (RT-LAMP) may allow for a more efficient and low-cost testing without the need for expensive equipment. In this study, RT-LAMP is used for ZIKV detection in various biological samples within 30 min, without first isolating the RNA from the sample. This technique is demonstrated using ZIKV infected patient urine and serum, and infected mosquito samples. 18S ribosomal ribonucleic acid and actin are used as controls in human and mosquito samples, respectively.

Introduction

In 2015, Zika virus (ZIKV) gained prominent global attention as an infectious disease of concern because infection during pregnancy was linked to miscarriage, stillbirth, severe neurological birth defects including microcephaly, as well as other congenital birth defects1. In rare cases, ZIKV has been associated with Guillain-Barré syndrome. ZIKV is primarily transmitted by Aedes mosquitoes; however, it can also be spread through sexual contact1. Given that the infection with ZIKV is asymptomatic in most people or presents with mild flu-like symptoms that overlap with the symptoms of infection of other arborviruses1, there was a need for improved methods for rapid and cost-effective detection of ZIKV to screen both people as well as local mosquito populations.

Quantitative reverse transcription PCR (qRT-PCR) is a reliable assay for ZIKV detection; however, this technique requires expensive specialized equipment, trained personnel, and RNA isolation from the sample of interest. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a one-step nucleic acid amplification method based on PCR technology that only requires one incubation temperature due to the use of a thermophilic DNA polymerase with strand displacement properties. This circumvents the need for a thermocycler and decreases the length of time needed to complete the assay. Additional advantages of RT-LAMP include its high specificity and sensitivity, robustness at a range of pH levels and temperatures, and resistance to many PCR inhibitors2. It has a relatively low cost and reagents are stable at room temperature. Given these characteristics, RT-LAMP can be deployed in a laboratory or in the field. As such, LAMP reactions have been developed to detect a range of pathogens and other types of infection3,4,5. The goal of the RT-LAMP protocol described in this paper is to detect ZIKV without RNA isolation in human serum and urine samples as well as in a single infected mosquito within 30 min through RT-LAMP. This method can be used to replace qRT-PCR as it is a sensitive, rapid diagnostic tool that works quickly and in settings outside of the laboratory.

Protocol

All methods described here have been approved by the Institutional Review Board (IRB) of Beaumont Health. All experiments were performed in accordance with relevant guidelines and regulations.

CAUTION: All potentially infectious materials should be handled according to Biosafety Level 2 standards including the use of personal protective equipment. Any procedures which may produce aerosol should be performed in a biosafety cabinet. Additionally, work with live mosquitoes should be performed in the appropriate Arthropod Containment Level 1-3 facility. Given the association of ZIKV infection with congenital abnormalities, women who are pregnant, trying to conceive, or the partners of these women should significantly minimize their laboratory exposure to ZIKV. Transport of ZIKV samples is classified in the United States as Category B Biological Substances in accordance with Department of Transportation Hazardous Materials Regulations (49 CFR Part 171-180) and therefore shipping samples should adhere to those guidelines. Import into the United States of ZIKV biospecimens requires a Centers for Disease Control and Prevention (CDC) Import Permit. Import of any arthropods that could serve as a vector for ZIKV transmission, even if they are not infected, requires a United States Department of Agriculture (USDA) permit. This information is current at the time of publication. Up-to-date recommendations can be found at https://www.cdc.gov/zika/laboratories/lab-safety.html.

NOTE: RT-LAMP reactions are prone to higher rates of false positive reactions, so precautions should be taken in experimental planning. All set-up and execution of RT-LAMP reactions should use designated pipettes and filter tips. Ideally, a lateral work flow should be established. If possible, analysis and imaging (Section 5) should occur in a separate enclosed room to prevent contamination. Opening of test tubes containing RT-LAMP products should be kept to a minimum.

1. RT-LAMP Primer Preparation

  1. Reconstitute each lyophilized RT-LAMP primer in molecular grade water to a final concentration of 100 µM (Table 1). Briefly vortex the primer solution to ensure a homogenous solution and briefly spin down the solution at maximum speed in a table top centrifuge to collect all primer solution.
  2. Prepare a 10x RT-LAMP Primer Mix of the FIP, BIP, F3, B3, LF, and LB primers using the volumes in Table 2. Briefly vortex the primer solution to ensure a homogenous solution, and briefly spin down the solution at maximum speed in a table top centrifuge to avoid any loss.
    NOTE: The RT-LAMP primer set for Ae. aegypti actin (AEDAE) does not contain a LB primer (loop primers are not always necessary for RT-LAMP reactions). In this case, replace the LB primer volume with molecular grade water.
  3. Store the primers at -20 °C between uses and avoid free-thaw cycles.

2. Sample Preparation

  1. For human urine samples: Use either fresh urine, frozen urine, or urine in preservative. For fresh or frozen sample: immediately spin down the sample after the collection for 10 min at 700 x g, and use the supernatant for analysis or freeze at -80 °C for future use. Thaw frozen samples on ice before use.
  2. For human serum samples: Use either fresh or frozen serum samples.
  3. For ZIKV infected cell lines: Use either conditioned media or cell lysates.
    NOTE: Cell-free conditioned media from Ae. albopictus C6/36 cells 8 days post-infection can be used as positive controls for ZIKV RT-LAMP reactions.
  4. For Ae. aegypti mosquitoes: Use either whole fresh or frozen mosquito carcasses. Thaw frozen mosquitoes on ice. Prepare a crude mosquito lysate by placing an individual mosquito in 100 µL of phosphate-buffered saline (PBS) and homogenize by crushing the mosquito 10 times with a P10 pipet tip (Figure 1). Briefly centrifuge the crude lysate to pellet any debris. Use the supernatant for downstream RT-LAMP analysis.
    Note: Positive controls can be generated in a laboratory setting by infecting female mosquitoes using intrathoracic microinjection with approximately 103 genome equivalents of virus in a volume of 200 nL and harvesting the mosquito 5 days post-infection.

3. Prepare RT-LAMP Master Mix

  1. Prepare a RT-LAMP master mix reaction on ice for each primer set to be used by using volume guide in Table 3.
    NOTE: The use of thermolabile Uracil DNA Glycosylase (UDG) assists in preventing false positives.
  2. Vortex briefly to ensure that all samples are well mixed, then spin down briefly to prevent volume loss.

4. RT-LAMP Assay

  1. Pipet 23.0 µL of the RT-LAMP master mix per reaction into a 200 µL PCR tube. Add 2.0 µL of sample (urine, serum, or crude mosquito lysate supernatant as described in Step 2). This will bring the total volume to 25.0 µL per RT-LAMP reaction. For the negative control, use molecular grade water. Include a positive control.
    ​NOTE: A PCR standard or virus stocks from supernatant of infected cell lines can be used as a positive control.
    1. Optional: Include a specificity control reaction of a related arbovirus such as dengue virus (DENV). Prepare the sample as outlined in Step 2 according to sample type. Add 2.0 µL of the specificity control to 23.0 µL of the RT-LAMP master mix into a 200 µL PCR tube.
  2. Heat the samples at 61 °C for 30 min using a heat block, water bath, or thermocycler.
  3. Heat deactivate the polymerase by heating to 80 °C for 10 min.

5. RT-LAMP Analysis

NOTE: Perform RT-LAMP analysis in a separate, enclosed space.

  1. After the incubation, access RT-LAMP reactions visually by looking for the presence of a color change.
    1. Dilute the fluorescent nucleic acid dye 1:10 in TAE (40 mM Tris, 20 mM acetic acid, 1 mM EDTA) buffer.
      CAUTION: Any nucleic acid stain binds to nucleic acids and therefore is a carcinogen. Wear gloves when handling.
    2. To 12 µL of the RT-LAMP reaction, add 2 µL of fluorescent nucleic acid dye dilution.
      NOTE: Negative reactions will be orange in color and positive reactions will be yellow/green in color.
    3. Optional: Take pictures of RT-LAMP reactions on a white background using a camera.
  2. Place the samples under 302 nm UV light to confirm the presence of RT-LAMP products by fluorescence. Take picture of the result using a camera.
    NOTE: Positive RT-LAMP reactions will have a fluorescent output.
    CAUTION: Wear UV protective eye googles or face shield when working with UV light.
  3. Optional: Confirm the presence of RT-LAMP products by performing gel electrophoresis on the samples.
    1. Pour a 2% agarose gel in 1x TAE buffer with a nucleic acid stain for visualization.
      CAUTION: Any nucleic acid stain binds to nucleic acids and therefore is a carcinogen. Wear gloves when handling.
    2. Add 5 µL of a DNA ladder in the first lane to compare the molecular weights.
    3. For each RT-LAMP reaction, mix 13 µL of RT-LAMP reaction mixture with 2 µL of DNA loading dye. Load the 15 µL mixture containing the DNA loading dye.
    4. Run the gel at 90 V for 90 min or until the bands are separated and image with 302 nm UV light.
      NOTE: Positive RT-LAMP reactions will have a laddering pattern. Negative RT-LAMP reactions should not contain any bands.

6. Disposal

  1. Dispose of RT-LAMP reactions in double sealed bags. Do not autoclave as this may aerosolize the RT-LAMP products, leading to false positive reactions in the future.

Results

RT-LAMP reactions can be analyzed using three different methods. First, with the addition of a fluorescent nucleic acid dye, positive reactions will be yellow/green in color where negative reactions will appear orange in color to the naked eye. Second, the addition of the fluorescent nucleic acid dye to RT-LAMP reaction results in a fluorescent signal when the samples are excited by UV light. Negative reactions will not have a detectable fluorescent signal over any background fluorescence...

Discussion

The ZIKV RT-LAMP assay described in this paper works using both human and mosquito samples6. The limit of detection was approximately 1 genome equivalent6, which should be sufficient since the typical viral load of a symptomatic ZIKV infected patient is 103 to 106 PFU/mL7. Additionally, this method can detect ZIKV in samples without first isolating RNA and without virus amplification in cell culture. This signifi...

Disclosures

LEL and MBC have intellectual property on Zika virus diagnosis methods. The remaining authors have no competing interests.

Acknowledgements

This work was supported by the Maureen and Ronald Hirsch family philanthropic contribution and Field Neurosciences Institute, St. Mary's of Michigan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We also thank Dr. Bernadette Zwaans and Elijah Ward for their critical review of the manuscript.

Materials

NameCompanyCatalog NumberComments
Bst 2.0 WarmStart DNA polymeraseNew England BiolabsM0537S
Isothermal Amplification Buffer New England BiolabsB0537S
WarmStart RTx Reverse TranscriptaseNew England BiolabsM0380S
Antarctic Thermolabile UDGNew England BiolabsM0372S
MgSO4New England BiolabsB1003S
100 mM dATP SolutionNew England BiolabsN0440SDeoxynucleotide Set N0446S
100 mM dCTP SolutionNew England BiolabsN0441SDeoxynucleotide Set N0446S
100 mM dTTP SolutionNew England BiolabsN0443SDeoxynucleotide Set N0446S
100 mM dGTP SolutionNew England BiolabsN0442SDeoxynucleotide Set N0446S
100 mM dUTP SolutionThermo Fisher ScientificR0133
SYBR Green I Nucleic Acid Gel StainInvitrogenS7563
Nancy-520Sigma Aldrich01494
Low DNA Mass LadderInvitrogen10-068-013
Zika Postive ControlRobert Koch Institute, GermanyN/A
AgaroseThermo Fisher ScientificBP1600
BlueJuice Gel Loading BufferInvitrogen10816015
PrimersIntegrated DNA TechnologiesCustom Oligo
Nuclease-Free WaterAmbionAM9938
Urine PreservativeNorgen Biotek18126
ZIKV PCR StandardRobert Koch InstituteN/AVero E6 cell supernatants
DENV2 New Guinea C ControlConnecticut Agricultural Experiment StationN/A

References

  1. Petersen, L. R., Jamieson, D. J., Powers, A. M., Honein, M. A. Zika Virus. New England Journal of Medicine. 374 (16), 1552-1563 (2016).
  2. Francois, P., et al. Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. Federation of European Microbiological Societies Immunology and Medical Microbiology. 62 (1), 41-48 (2011).
  3. Tomita, N., Mori, Y., Kanda, H., Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nature Protocols. 3 (5), 877-882 (2008).
  4. Gandasegui, J., et al. The Rapid-Heat LAMPellet Method: A Potential Diagnostic Method for Human Urogenital Schistosomiasis. Public Library of Science Neglected Tropical Diseases. 9 (7), 0003963 (2015).
  5. Barkway, C. P., Pocock, R. L., Vrba, V., Blake, D. P. Loop-mediated isothermal amplification (LAMP) assays for the species-specific detection of Eimeria that infect chickens. The Journal of Visualized Experiments. (96), (2015).
  6. Lamb, L. E., et al. Rapid Detection of Zika Virus in Urine Samples and Infected Mosquitos by Reverse Transcription-Loop-Mediated Isothermal Amplification. Scientific Reports. 8 (1), 3803 (2018).
  7. Faye, O., et al. One-step RT-PCR for detection of Zika virus. Journal of Clinical Virology. 43 (1), 96-101 (2008).
  8. Schrader, C., Schielke, A., Ellerbroek, L., Johne, R. PCR inhibitors - occurrence, properties and removal. Journal of Applied Microbiology. 113 (5), 1014-1026 (2012).
  9. Poole, C. B., Tanner, N. A., Zhang, Y., Evans, T. C., Carlow, C. K. Diagnosis of brugian filariasis by loop-mediated isothermal amplification. Public Library of Science Neglected Tropical Diseases. 6 (12), 1948 (2012).
  10. Tanner, N. A., Zhang, Y., Evans, T. C. Simultaneous multiple target detection in real-time loop-mediated isothermal amplification. Biotechniques. 53 (2), 81-89 (2012).
  11. Chan, K., et al. Rapid, Affordable and Portable Medium-Throughput Molecular Device for Zika Virus. Scientific Reports. 6, 38223 (2016).
  12. Lee, D., et al. Simple and Highly Sensitive Molecular Diagnosis of Zika Virus by Lateral Flow Assays. Analytical Chemistry. 88 (24), 12272-12278 (2016).
  13. Pardee, K., et al. Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell. 165 (5), 1255-1266 (2016).
  14. Song, J., et al. Instrument-Free Point-of-Care Molecular Detection of Zika Virus. Analytical Chemistry. 88 (14), 7289-7294 (2016).
  15. Yaren, O., et al. Point of sampling detection of Zika virus within a multiplexed kit capable of detecting dengue and chikungunya. BioMed Central Infectious Diseases. 17 (1), 293 (2017).
  16. Wang, X., et al. Rapid and sensitive detection of Zika virus by reverse transcription loop-mediated isothermal amplification. Journal of Virological Methods. 238, 86-93 (2016).
  17. Priye, A., et al. A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses. Scientific Reports. 7, 44778 (2017).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

RT LAMPZika VirusUrineSerumMosquitoDiagnosisInfectious DiseaseDengueChikungunyaWest Nile VirusPrimersSample PreparationMaster MixIsothermal Amplification

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved