A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we show the use of traditional dark-field microscopy to monitor the dynamics of gold nanorods (AuNRs) on cell membrane. The location and orientation of single AuNRs are detected using ImageJ and MATLAB, and the diffusive states of AuNRs are characterized by single particle tracking analysis.
Analyzing the diffusional dynamics of nanoparticles on cell membrane plays a significant role in better understanding the cellular uptake process and provides a theoretical basis for the rational design of nano-medicine delivery. Single particle tracking (SPT) analysis could probe the position and orientation of individual nanoparticles on cell membrane, and reveal their translational and rotational states. Here, we show how to use traditional dark-field microscopy to monitor the dynamics of gold nanorods (AuNRs) on live cell membrane. We also show how to extract the location and orientation of AuNRs using ImageJ and MATLAB, and how to characterize the diffusive states of AuNRs. Statistical analysis of hundreds of particles show that single AuNRs perform Brownian motion on the surface of U87 MG cell membrane. However, individual long trajectory analysis shows that AuNRs have two distinctly different types of motion states on the membrane, namely long-range transport and limited-area confinement. Our SPT methods can be potentially used to study the surface or intracellular particle diffusion in different biological cells and can become a powerful tool for investigations of complex cellular mechanisms.
The dynamics of nanoparticles (NPs) on the membrane is closely associated with the cellular uptake process, which is essential for the understanding of cell functions, viral or bacterial infections and the development of artificial nanomedical delivery systems1,2. Single particle tracking (SPT) technique is a robust tool for characterizing the heterogeneous behaviors of NPs3,4. In general, cell membrane is fluidic, which means that the components such as proteins and lipids can move laterally in the plasma membrane plane5,<....
1. Cell culture
In the protocol, the unmodified 40 x 85 nm CTAB-AuNRs were used. As shown in Figure 2B, its longitudinal plasmonic maximum at is ~650 nm (red region) and transverse resonance is at 520 nm (green region). Previous literatures have revealed that the optical properties (such as LSPR intensity) of plasmonic AuNRs will change significantly with their diameter20,22. In Figure 2C, the scattering intensity from .......
The presented protocol is used to study the dynamics of AuNRs on cell membrane. The protocol consists of four parts, including microscopic imaging, data extraction, dynamic parameters calculation and data analysis methods, and each part is flexible and universal. Therefore, there are many possible future applications, for instance, studying movement of NP-linked membrane molecules on membrane, endocytosis dynamics of NP-labeled receptors, dynamic analysis of intracellular NPs and vesicle-coated NPs transportation along m.......
This work was supported by the National Natural Science Foundation of China with grant numbers of 21425519, 91853105 and 21621003.
....Name | Company | Catalog Number | Comments |
CTAB coated gold nanorods(CTAB-AuNRs) | Nanoseedz | NR-40-650 | 85 nm * 40 nm |
Color CMOS camera | Olympus | DP74 | Japan |
Coverslips | Citoglas | z10212222C | 22*22 mm |
Dark-field microscopy | Nikon | 80i | upright microscope |
Fetal bovine serum (FBS) | Gibco | 10099141 | |
Fiji | National Institutes of Health | 2.0.0-rc-69/1.52 p | a distribution of ImageJ |
Grooved glass slide | Sail brand | 7103 | Single concave |
Image J | National Institutes of Health | 1.52 j | |
MATLAB | MathWorks | R2019b | |
MATLAB Code | https://github.com/fenggeqd/JOVE-2020 | ||
Minimum essential medium (MEM) | Gibco | 10-010-CVR | with phenol red |
Minimum essential medium (MEM) | Gibco | 51200038 | no phenol red |
Origin | OriginLab | Origin Pro 2018C | |
Penicillin-streptomycin | Gibco | 15140122 | |
Plastic cell culture dishes | Falcon | 353002 | |
Plastic cell culture dishes | Falcon | 353001 | 35*10 mm |
U87 MG cell | American Type Culture Collection | ATCC HTB-14 | a human primary glioblastoma cell line |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved