A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
Here, we describe a mouse model of retinal ischemia by transient bilateral common carotid artery occlusion using simple sutures and a clamp. This model can be useful for understanding the pathological mechanisms of retinal ischemia caused by cardiovascular abnormalities.
Diverse vascular diseases such as diabetic retinopathy, occlusion of retinal veins or arteries and ocular ischemic syndrome can lead to retinal ischemia. To investigate pathological mechanisms of retinal ischemia, relevant experimental models need to be developed. Anatomically, a main retinal blood supplying vessel is the ophthalmic artery (OpA) and OpA originates from the internal carotid artery of the common carotid artery (CCA). Thus, disruption of CCA could effectively cause retinal ischemia. Here, we established a mouse model of retinal ischemia by transient bilateral common carotid artery occlusion (tBCCAO) to tie the right CCA with 6-0 silk sutures and to occlude the left CCA transiently for 2 seconds via a clamp, and showed that tBCCAO could induce acute retinal ischemia leading to retinal dysfunction. The current method reduces reliance on surgical instruments by only using surgical needles and a clamp, shortens occlusion time to minimize unexpected animal death, which is often seen in mouse models of middle cerebral artery occlusion, and maintains reproducibility of common retinal ischemic findings. The model can be utilized to investigate the pathophysiology of ischemic retinopathies in mice and further can be used for in vivo drug screening.
The retina is a neurosensory tissue for visual function. Since a substantial amount of oxygen is needed for visual function, the retina is known as one of the highest oxygen demanding tissues in the body1. The retina is susceptible to vascular diseases as oxygen is delivered through blood vessels. Various types of vascular diseases, such as diabetic retinopathy and retinal blood vessel (veins or arteries) occlusion, can induce retinal ischemia. To investigate pathological mechanisms of retinal ischemia, reproducible and clinically relevant experimental models of retinal ischemia are considered necessary. Middle cerebral artery occlusion (MCAO) by insertion of an intraluminal filament is the most generally utilized method for the development of in vivo rodent models of experimental cerebral ischemia2,3. Due to the proximity of the ophthalmic artery (OpA) to MCA, MCAO models are also used simultaneously to understand the pathophysiology of retinal ischemia4,5,6. To induce cerebral ischemia along with retinal ischemia, long filaments are typically inserted through incision of the common carotid artery (CCA) or the external carotid artery (ECA). These methods are difficult to perform, require a long time to complete the surgery (over 60 minutes for one mouse), and lead to high variabilities in the outcomes after the surgery7. It remains important to develop a better model to improve these concerns.
In this study, we simply used short transient bilateral CCA occlusion (tBCCAO) with needles and a clamp to induce retinal ischemia in mice and analyzed typical results of ischemic injuries in the retina. In this video, we will give a demonstration of the tBCCAO procedure.
All methods described here have been approved by the Institutional Animal Care and Use Committee (IACUC) of Keio University School of Medicine.
1. Preparation of surgical instruments and animals
2. Transient bilateral common carotid artery occlusion (tBCCAO)
3. General observations (survival rates and eyelid drooping)
4. Retinal blood perfusion
5. Western blot
6. Quantitative PCR (qPCR)
7. Immunohistochemistry (IHC)
8. Electroretinography (ERG)
9. Optical coherence tomography (OCT)
After systemic circulation of FITC-dextran for 2 minutes, retinal vasculatures of the left and right retinas in the sham-operated mice and tBCCAO-operated mice were examined (Supplementary Figure 1). FITC-dextran was fully visible in the both retinas in the sham-operated mice and the left retina in the tBCCAO-operated mice, while it was partially detectible in the right retina in the tBCCAO-operated mice.
After tBCCAO, eyelid drooping was examined (Figure ...
In the study, we have shown that tBCCAO, using simple sutures and a clamp, could induce retinal ischemia and accompanying retinal dysfunction. Furthermore, we have demonstrated our current protocol for the development of a mouse model of retinal ischemia is easier and faster in comparison with other previous protocols for the development of retinal ischemic injury models2,3,7.
Anatomically, the left a...
The authors have nothing to disclose.
This work was supported by Grants-in-Aid for Scientific Research (KAKENHI) (18K09424 to Toshihide Kurihara and 20K18393 to Yukihiro Miwa) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).
Name | Company | Catalog Number | Comments |
Atipamezole hydrochloride | Zenoaq | Antisedan | For anti-anesthesia |
Applied Biosystems 7500 Fast | Applied Biosystems | - | For qPCR |
Butorphanol tartrate | Meiji Seika Pharma | Vetorphale | For anesthesia |
BZ-II Analyzer | KEYENCE | - | For an image merge |
BALB/cAJc1 | CLEA | - | Mouse strain |
β-Actin (8H10D10) Mouse mAb | CST | 3700 | For western blot |
Clamp Forcep | World Precision Instruments | WPI 500451 | For surgery |
Dumont forceps #5 | Fine Science Tools | 11251-10 | For surgery |
DAPI solution | Dojindo | 340-07971 | For IHC |
Envisu SD-OCT system | Leica | R4310 | For OCT |
FITC-dextran | Merk | FD2000S | For retinal blood perfusion |
Fluorescence microscope | KEYENCE | BZ-9000 | For fluorescence detection |
Gatifloxacin hydrate | Senju Pharmaceutical | Gachifuro | For anti-bacterial infection |
GFAP Monoclonal Antibody (2.2B10) | Thermo | 13-0300 | For IHC |
Heating pad | Marukan | RH-200 | For surgery |
HIF-1α (D1S7W) XP Rabbit mAb | CST | 36169 | For western blot |
ImageQuant LAS 4000 mini | GE Healthcare | - | For chemiluminescence |
Midazolam | Sandoz K.K | SANDOZ | For anesthesia |
Microtome Tissue-Tek TEC 6 | Sakura | - | For sectioning |
Medetomidine | Orion Corporation | Domitor | For anesthesia |
Needle holder | Handaya | HS-2307 | For surgery |
PuREC | MAYO Corporation | - | For ERG |
Scissor | Fine Science Tools | 91460-11 | For surgery |
Sodium hyaluronate | Santen Pharmaceutical | Hyalein | For eye lubrication |
Tropicamide/Penylephrine hydrochloride | Santen Pharmaceutical | Mydrin-P | For mydriasis |
6-0 silk suture | Natsume | E12-60N2 | For surgery |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved