A subscription to JoVE is required to view this content. Sign in or start your free trial.
This article describes the experimental procedures for (a) depletion of U1 snRNP from nuclear extracts, with concomitant loss of splicing activity; and (b) reconstitution of splicing activity in the U1-depleted extract by galectin-3 - U1 snRNP particles bound to beads covalently coupled with anti-galectin-3 antibodies.
Classic depletion-reconstitution experiments indicate that galectin-3 is a required splicing factor in nuclear extracts. The mechanism of incorporation of galectin-3 into the splicing pathway is addressed in this paper. Sedimentation of HeLa cell nuclear extracts on 12%-32% glycerol gradients yields fractions enriched in an endogenous ~10S particle that contains galectin-3 and U1 snRNP. We now describe a protocol to deplete nuclear extracts of U1 snRNP with concomitant loss of splicing activity. Splicing activity in the U1-depleted extract can be reconstituted by the galectin-3 - U1 snRNP particle trapped on agarose beads covalently coupled with anti-galectin-3 antibodies. The results indicate that the galectin-3 - U1 snRNP - pre-mRNA ternary complex is a functional E complex leading to intermediates and products of the splicing reaction and that galectin-3 enters the splicing pathway through its association with U1 snRNP. The scheme of using complexes affinity- or immuno-selected on beads to reconstitute splicing activity in extracts depleted of a specific splicing factor may be generally applicable to other systems.
Production of most eukaryotic messenger RNAs (mRNAs) involves removal of introns and ligation of exons in a nuclear process termed pre-mRNA splicing1. Two classes of RNA-protein complexes (RNPs) direct the processing of pre-messenger RNA into mature mRNA via spliceosomal complexes. One class, nascent pre-messenger RNPs, is formed co-transcriptionally by the binding of heterogeneous nuclear RNP proteins and other RNA-binding proteins, including some members of the SR family, yielding hnRNP complexes2. The second class, uracil-rich small nuclear RNPs (U snRNPs with U1, U2, U4, U5, and U6 snRNAs) is associated with U-specif....
1. Notes on general procedures
NE depleted of U1 snRNP (U1ΔNE from Section 2.2.6) and Gal3 - U1 snRNP complexes from the 10S region of the glycerol gradient immunoprecipitated by anti-Gal3 (step 3.2.7) were mixed in a splicing reaction. This reaction mixture contained U1 snRNA (Figure 2A, lane 3), as well as the U1-specific protein, U1-70K (Figure 2B, lane 3). As expected, the anti-Gal3 precipitated Gal3 (Figure 2B, lane.......
This report provides the experimental details that document a Gal3 - U1 snRNP complex trapped on anti-Gal3 coated beads can bind to pre-mRNA substrate and this ternary complex can restore splicing activity to an U1 snRNP-depleted NE. Gal3 is one member of a family of proteins originally isolated on the basis of its galactose-specific carbohydrate-binding activity23. Early immunofluorescence and subcellular fractionation studies provided the initial hint of an association of Gal3 with components of.......
This work has been supported by National Science Foundation Grant MCB-0092919 and Michigan State University Intramural Research Grant 09-CDFP-2001 (to RJP) and by National Institutes of Health Grant GM-38740 and Michigan AgBioResearch Project MICL02455 (to JLW).
The MINX pre-mRNA substrate used in the splicing assays was a kind gift from Dr. Susan Berget (Baylor College of Medicine, Houston, TX, USA).
....Name | Company | Catalog Number | Comments |
anti-U1 snRNP | The Binding Site | Hu ENA-RNP #33471 | human autoimmune serum specific for U1 snRNP |
bottle top vacuum filter | Fisher Scientific | Corning 431153 (0.22 μm; PES 150 ml) | for filtering solutions containing Tris |
centrifuge | International Equipment Company | IEC Model PR-6 | for pelletting Sepharose beads in immunoprecipitation |
diethylpyrocarbonate (DEPC) | Sigma-Aldrich | 159220-5G | for treatment of water used in preparation of all solutions |
dimethylpimelimidate (DMP) | Sigma-Aldrich | 80490-5G | for cross-linking antibody to Sepharose beads |
electrophoresis cell | BioRad Laboratories, Inc | Mini-Protean II | for SDS-PAGE separation of proteins |
ethanolamine | Sigma-Aldrich | 411000-100ml | for blocking after the cross-linking reaction |
gel electrophoresis system | Hoefer, Inc | HSI SE 500 Series | for separating snRNAs by gel electrophoresis |
gel slab dryer | BioRad | Model 224 | for drying gel slabs for autoradiography |
Hybond ECL membrane | GE Healthcare | RPN3032D (0.2 μm; 30 cm x 3 m) | for immunoblotting of proteins on membrane |
microdialyzer (12 x 100 μl sample capacity) | Pierce | Microdialyzer System 100 | for exchanging the buffer of nuclear extract  |
microdialyzer membranes (8K cutoff) | Pierce | 66310 | for exchanging the buffer of nuclear extract |
non-fat dry milk | Spartan Stores | Spartan Instant Non-fat Dry Milk | |
Protein A Sepharose CL-4B | Millipore-Sigma | GE 17-0780-01 | for coupling antibody to beads |
Proteinase K | Millipore-Sigma | P2308-5mg | for stopping the splicing reaction to isolate the RNAs |
RNasin | Promega | N2111 | for inhibiting ribonuclease activity |
rocker/rotator | Lab Industries, Inc | Labquake Shaker 400-110 | for mixing protein solutions in coupling reactions and in immunoprecipitation |
Safety-Solve | Research Products International Corp. | No. 111177 | scintillation counting cocktail for determination of radioactivity in splicing substrate |
scintillation counter | Beckman Instruments | LS6000SC | scintillation counter for determination of radioactivity |
speed vaccum concentrator | Savant | SVC 100H | for drying ethanol-precipitated RNA pellets |
Transphor electrophoresis unit | Hoefer, Inc | Hoefer TE Series Transphor | for protein transfer from SDS-PAGE to blotting membrane |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved