Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We present detailed protocols for the generation and characterization of 2D and 3D human induced pluripotent stem cell (hIPSC)-based models of neocortical development as well as complementary methodologies enabling qualitative and quantitative analysis of primary cilium (PC) biogenesis and function.

Abstract

Primary cilia (PC) are non-motile dynamic microtubule-based organelles that protrude from the surface of most mammalian cells. They emerge from the older centriole during the G1/G0 phase of the cell cycle, while they disassemble as the cells re-enter the cell cycle at the G2/M phase boundary. They function as signal hubs, by detecting and transducing extracellular signals crucial for many cell processes. Similar to most cell types, all neocortical neural stem and progenitor cells (NSPCs) have been shown harboring a PC allowing them to sense and transduce specific signals required for the normal cerebral cortical development. Here, we provide detailed protocols to generate and characterize two-dimensional (2D) and three-dimensional (3D) cell-based models from human induced pluripotent stem cells (hIPSCs) to further dissect the involvement of PC during neocortical development. In particular, we present protocols to study the PC biogenesis and function in 2D neural rosette-derived NSPCs including the transduction of the Sonic Hedgehog (SHH) pathway. To take advantage of the three-dimensional (3D) organization of cerebral organoids, we describe a simple method for 3D imaging of in toto immunostained cerebral organoids. After optical clearing, rapid acquisition of entire organoids allows detection of both centrosomes and PC on neocortical progenitors and neurons of the whole organoid. Finally, we detail the procedure for immunostaining and clearing of thick free-floating organoid sections preserving a significant degree of 3D spatial information and allowing for the high-resolution acquisition required for the detailed qualitative and quantitative analysis of PC biogenesis and function.

Introduction

Primary cilia (PC) are microtubule-based organelles that sense and transduce a plethora of chemical and mechanical cues from the extracellular environment. In particular, PC is the central organelle for the transduction of the Hedgehog signaling pathway in vertebrates1,2. While most neural cells have long been shown harboring a PC, the contribution of this organelle in shaping the central nervous system has long been undervalued. Studies on neocortical development have led to the discovery of multiple neural stem and progenitor cells (NSPCs), all harboring a PC, the location of which has been propose....

Protocol

1. Generation of 2D hIPS cell-based models of neocortical development

  1. Neural rosette formation
    1. Start with hIPSC cultures harboring large regular colonies, exhibiting less than 10% differentiation and no more than 80% confluency.
    2. Rinse the hIPSCs with 2 mL of PBS.
    3. Add 2 mL of NSPC induction medium supplemented with the Rock inhibitor (NIM + 10 µM of Y-27632).
    4. Manually dissect each hIPSC colony from one 35 mm dish using a needle.......

Representative Results

2D hIPS cell-based models to study primary cilium biogenesis and function
The protocol detailed here has been adapted from previously published studies20,21,22. This protocol allows the generation of neural rosette structures that contain neocortical progenitors and neurons similar to those seen in the developing neocortex. Detailed validation can be performed by conventional immunostaining analysis using .......

Discussion

PC are now regarded as key organelles regulating crucial steps during normal cerebral cortical development18,19,31 including NSPC expansion and commitment8,9,10,11,12 as well as neuronal migration13,14 and syn.......

Acknowledgements

This work was supported by grants from the Agence Nationale de la Recherche (ANR) to S.T. (ANR-17-CE16-0003-01) and N.B.B. (ANR-16-CE16-0011 and ANR-19-CE16-0002-01). LB is supported by the ANR under Investissements d'avenir program (ANR-10-IAHU-01) and the Fondation Bettencourt Schueller (MD-PhD program). The Imagine Institute is supported by state funding from the ANR under the Investissements d'avenir program (ANR-10-IAHU-01, CrossLab projects) and as part of the second Investissements d'Avenir program (ANR-17-RHUS-0002).

....

Materials

NameCompanyCatalog NumberComments
2-Mercaptoéthanol (50 mM)ThermoFisher Scientific31350010
6-well Clear Flat Bottom Ultra-Low Attachment Multiple Well PlatesCorning3471
96-well Clear Round Bottom Ultra-Low Attachment MicroplateCorning7007
B-27 Supplement (50X), minus vitamin AThermoFisher Scientific12587010
B-27 Supplement (50X), serum freeThermoFisher Scientific17504044
CellAdhere Dilution BufferStemCell Technologies7183
DMEM/F-12, GlutamaxThermoFisher Scientific31331028
DMSOATCC4-X
DorsomorphinStemCell Technologies72102
Easy Grip 35 10mmFalcon353001
EDTAThermoFisher Scientific15575020
EGF , 25µgThermofischerPHG0315
FGF2 , 25µgThermofischerPHG0264
Gentle Cell Dissociation ReagentStemCell Technologies7174
InsulinThermoFisher Scientific12585014
KnockOut SerumThermoFisher Scientific10828028
Laminin (1mg)Thermofischer23017015
LDN193189StemCell Technologies72147
Matrigel Growth Factor ReducedCorning354230
MEM Non-Essential Amino Acids Solution (100X)ThermoFisher Scientific11140050
Mowiol 4-88Sigma Aldrich81381-250G
mTeSR1StemCell Technologies85850
Neural Basal MediumThermofischer21103049
Orbital shakerDutscher995002
PBSThermoFisher Scientific14190094
Penicillin-Streptomycin (10,000 U/mL)ThermoFisher Scientific15140122
PFA 32%Electron Microscopy Sciences15714
Poly-L-Ornithine (PO)SigmaP4957
Recombinant human BDNF 10 µgStem Cell Technologies78005
Recombinant Human FGF-basicPeprotech100-18B
rSHHR&D Systems8908-SH
SAGSanta CruzSc-202814
SB431542StemCell Technologies72232
Stembeads FGF2StemCultureSB500
SucroseSigma AldrichS7903-250G
Superfrost Plus Adhesion SlidesThermo ScientificJ1800AMNZ
Supplément N2- (100X)ThermoFisher Scientific17502048
TDE 2,2’-ThiodiethanolSigma Aldrich166782-500G
VitronectinStemCell Technologies7180
Y-27632StemCell Technologies72304
Primary Antibodies
ARL13BAbcamAb1366481/200e
ARL13BProteintech17711-1-AP1/500e
CTIP2AbcamAb184651/500e
GLI2R&D SystemsAF35261/100
GPR161Proteintech13398-1-AP1/100
N-CadherinBD Transduction Lab6109211/500e
P-VimentinMBLD076-31/500e
PAX6BiolegendPRB-278P1/200e
PCNTAbcamAb44481/1000e
S0X2R&D SystemsMAB20181/200e
SATB2AbcamAb515021/200e
TBR2AbcamAb2168701/400e
TPX2NovusBioNB500-1791/500e
γTUBULINSigma AldrichT65571/500e
Secondary Antibodies
Donkey anti-rabbit AF488ThermoFisher ScientificA212061/500e
Goat anti-mouse AF555ThermoFisher ScientificA214221/500e
Goat anti-mouse AF647ThermoFisher ScientificA212361/500e
Goat anti-rat AF555ThermoFisher ScientificA214341/500e

References

  1. Huangfu, D., et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature. 426 (6962), 83-87 (2003).
  2. Goetz, S. C., Anderson, K. V. The primary cilium: a signalling centre during....

Explore More Articles

2D3DHumanInduced Pluripotent Stem CellPrimary CiliumNeocortical DevelopmentNeural RosettesDorsal Forebrain OrganoidsEmbryoid BodyDual SMAD InhibitionImmunohistochemistryVibratomeConfocal Microscopy

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved