Sign In

In This Article

  • Abstract
  • Reprints and Permissions

Abstract

The retinal pigment epithelium (RPE) and retina are functionally and structurally connected tissues that work together to regulate light perception and vision. Proteins on the RPE apical surface are tightly associated with proteins on the photoreceptor outer segment surface, making it difficult to consistently separate the RPE from the photoreceptors/retina. We developed a method to efficiently separate the retina from the RPE of human eyes to generate complete RPE/choroid and retina flatmounts for separate cellular analysis of the photoreceptors and RPE cells. An intravitreal injection of a high-osmolarity solution of D-mannitol, a sugar not transported by the RPE, induced the separation of the RPE and retina across the entire posterior chamber without causing damage to the RPE cell junctions. No RPE patches were observed attached to the retina. Phalloidin labeling of actin showed RPE shape preservation and allowed morphometric analysis of the entire epithelium. An artificial intelligence (AI)-based software was developed to accurately recognize and segment the RPE cell borders and quantify 30 different shape metrics. This dissection method is highly reproducible and can be easily extended to other animal models.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Keywords Retinal Pigment EpitheliumRPEChoroidFlatmountHistological AnalysisRetinal DegenerationDissection TechniqueREShAPE SoftwareD MannitolDPBSPFAMacular RegionCiliary Margin

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved