A subscription to JoVE is required to view this content. Sign in or start your free trial.
This article presents a detailed protocol for dissecting uterosacral ligaments and other pelvic floor tissues, including the cervix, rectum, and bladder in mice, to expand the study of female reproductive tissues.
Pelvic organ prolapse (POP) is a condition that affects the integrity, structure, and mechanical support of the pelvic floor. The organs in the pelvic floor are supported by different anatomical structures, including muscles, ligaments, and pelvic fascia. The uterosacral ligament (USL) is a critical load-bearing structure, and injury to the USL results in a higher risk of developing POP. The present protocol describes the dissection of murine USLs and the pelvic floor organs alongside the acquisition of unique data on the USL biochemical composition and function using Raman spectroscopy and the evaluation of mechanical behavior. Mice are an invaluable model for preclinical research, but dissecting the murine USL is a difficult and intricate process. This procedure presents an approach to guide the dissection of murine pelvic floor tissues, including the USL, to enable multiple assessments and characterization. This work aims to aid the dissection of pelvic floor tissues by basic scientists and engineers, thus expanding the accessibility of research on the USL and pelvic floor conditions and the preclinical study of women's health using mouse models.
Approximately 50% of women are affected by pelvic organ prolapse (POP)1,2. About 11% of these women fit the criteria for undergoing surgical repair, which has a poor success rate (~30%)3,4. POP is characterized by the descent of any or all of the pelvic organs (i.e., bladder, uterus, cervix, and rectum) from their natural position due to the failure of the USL and the pelvic floor muscles to provide adequate support5. This condition involves anatomical dysfunction and disruption of the connective tissue, as well as neuromuscular....
All animal experiments and procedures were performed according to protocol #2705, approved by the Animal Care and Use Committee of the University of Colorado Boulder. Six week old female C57BL/6J mice were used for the present study. The animals were obtained from a commercial source (see Table of Materials).
1. Animal preparation
Each step of the dissection of a wild-type mouse is detailed in the associated video and figures related to the protocol. For this study, 6 week old female C57BL/6J mice were used (Supplementary Table 1). Three sample groups with USLs treated with different enzymes were analyzed: control (no treatment), collagenase-treated, and chondroitinase-treated groups. The smooth muscle, nerves, and lymphatics in the USL are surrounded by an ECM rich in fibrillar collagens and glycosaminoglycans (GAGs)
The effect of structural damage on female reproductive tissues is understudied, and an easily accessible animal model for POP research is needed. The mouse is a cost-effective model that can mimic human reproductive studies16. Due to the growing interest in the study of the female reproductive system, there is a need for methods that aid the study of these tissues. To address this need, in this work, a method is established to dissect and prepare murine pelvic floor tissues for structural and func.......
This work was supported by the CU Boulder Summer Underground Research Opportunities Program (UROP) grant (C.B.), the NSF Graduate Research Fellowship (L.S.), the Schmidt Science Fellowship (C.L.), the University of Colorado Research & Innovation Seed Grant Program (2020 award to V.F., S.C., and K.C.), and the Anschutz Boulder Nexus Seed Grant at the University of Colorado (to V.F. and K.C.). Special acknowledgment goes to Dr. Tyler Tuttle for help with the loading chamber design as well as the Calve lab members for helpful discussions.
....Name | Company | Catalog Number | Comments |
11 Blade | Fisher | 3120030 | Removable blade |
1x PBS | Fisher | BP399-1 | Diluted from 10x concentration |
Chondroitinase ABC | Sigma | C3667-10UN | Enzyme |
Collagenase Type I | Worthington Biochemical | LS004194 | Enzyme |
Confocal Microscope | Leica | STELLARIS 5 | Upright configuration |
Dissection Microscope | Leica | S9E | With camera |
Dumont #5 Forceps | Fisher | NC9626652 | Thin tip |
Female C57BL/6J mice | Jackson Laboratory | strain #: 000664 | |
FemtoTools Micromanipulator | FemtoTools | FT-RS1002 | 100 mN load cell |
FST Curved Forceps | Fisher | NC9639443 | Curved tip |
FST Sharp 9 mm Scissors | Fisher | NC9639443 | Dissection scissors |
Ghost Dye 780 | Tonbo | 13-0865-T500 | Free amine stain |
Kimwipes | Fisher | 06-666 | Box of 50 wipes |
OCT | Tissue Tek | 4583 | Used for tissue preservation |
PDMS | Thermo Fisher | 044764.AK | Follow manufacturer's instructions |
Petri Dishes 35 mm | Fisher | FB0875711A | Used for dissected tissue |
Polyglactin 5-0 Suture | Veter.Sut | VS385VL | With needle |
Renishaw InVia Raman Microscope | Renishaw | PN192(EN)-02-A | With confocal objectives |
Rocking Platform | VWR | 10127-876 | 2 tier platform |
Surgical Gloves | Fisher | 52818 | For dissection |
Sytox | Thermo Fisher | S11381 | Nuclear stain |
T-pins | Fisher | S99385 | For dissection |
Transfer Pipets | Fisher | 13-711-7M | For dissection |
Underpads | Fisher | 22037950 | To cover dissection pad |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved