Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Neutrophil extracellular traps (NETs) are associated with various diseases, and immunofluorescence is often used for their visualization. However, there are various staining protocols, and, in many cases, only one type of tissue is examined. Here, we establish a generally applicable protocol for staining NETs in mouse and human tissue.

Abstract

Neutrophil extracellular traps (NETs) are released by neutrophils as a response to bacterial infection or traumatic tissue damage but also play a role in autoimmune diseases and sterile inflammation. They are web-like structures composed of double-stranded DNA filaments, histones, and antimicrobial proteins. Once released, NETs can trap and kill extracellular pathogens in blood and tissue. Furthermore, NETs participate in homeostatic regulation by stimulating platelet adhesion and coagulation. However, the dysregulated production of NETs has also been associated with various diseases, including sepsis or autoimmune disorders, which makes them a promising target for therapeutic intervention. Apart from electron microscopy, visualizing NETs using immunofluorescence imaging is currently one of the only known methods to demonstrate NET interactions in tissue. Therefore, various staining methods to visualize NETs have been utilized. In the literature, different staining protocols are described, and we identified four key components showing high variability between protocols: (1) the types of antibodies used, (2) the usage of autofluorescence-reducing agents, (3) antigen retrieval methods, and (4) permeabilization. Therefore, in vitro immunofluorescence staining protocols were systemically adapted and improved in this work to make them applicable for different species (mouse, human) and tissues (skin, intestine, lung, liver, heart, spinal disc). After fixation and paraffin-embedding, 3 µm thick sections were mounted onto slides. These samples were stained with primary antibodies for myeloperoxidase (MPO), citrullinated histone H3 (H3cit), and neutrophil elastase (NE) according to a modified staining protocol. The slides were stained with secondary antibodies and examined using a widefield fluorescence microscope. The results were analyzed according to an evaluation sheet, and differences were recorded semi-quantitatively.

Here, we present an optimized NET staining protocol suitable for different tissues. We used a novel primary antibody to stain for H3cit and reduced non-specific staining with an autofluorescence-reducing agent. Furthermore, we demonstrated that NET staining requires a constant high temperature and careful handling of samples.

Introduction

Neutrophil extracellular traps (NETs) were first visualized by Brinkmann et al. as a pathway of cellular death different from apoptosis and necrosis in 20041. In this pathway, neutrophils release their decondensed chromatin into the extracellular space to form large web-like structures covered in antimicrobial proteins that were formerly stored in the granules or cytosol. These antimicrobial proteins include neutrophil elastase (NE), myeloperoxidase (MPO), and citrullinated histone H3 (H3cit), which are commonly used for indirect immunofluorescence detection of NETs2. This method not only identifies the quantitative pres....

Protocol

This study included mouse tissues derived from experiments approved by the Hamburg State Administration for Animal Research, Behörde für Justiz und Verbraucherschutz, Hamburg, Germany (73/17, 100/17, 94/16, 109/2018, 63/16). The tissues used were mouse lung and colon from a septic model and burned skin. We used 8 week old male and female mice. The European Directive 2010/63/EU on the protection of animals used for scientific purposes was followed for all the experiments. The anonymized human samples included ti.......

Representative Results

Before starting our protocol optimization, we identified key steps for successful staining by searching PubMed for studies that used FFPE tissue for the immunostaining of NETs and compared their protocols. The most promising protocol differences were identified as the key steps for the protocol optimization, while steps that mostly corresponded to each other were not changed (Table 1).

Table 1: PubMed Research for FFPE immunostaining of NETs. This table shows .......

Discussion

In this work, we aimed to adapt and optimize the existing protocols for imaging NETs to more tissue types, beginning with the actual staining process. The first critical step for this method is the selection of the most suitable antibodies. For NE, we tried an NE antibody from a mouse host on human tissue, which showed no reliable staining compared to NE from a rabbit host. Furthermore, Thålin et al. proposed H3cit (R8) as a more specific antibody for extracellular staining. We compared this antibody with the widely.......

Acknowledgements

This research was founded by the German Research Society (BO5534). We thank Antonia Kiwitt, Moritz Lenz, Johanna Hagens, Dr. Annika Heuer, and PD Dr. Ingo Königs for providing us with samples. Additionally, the authors thank the team of the UKE Microscopy Imaging Facility (Core facility, UKE Medical School) for support with the immunofluorescence microscopy.

....

Materials

NameCompanyCatalog NumberComments
      Dilution
Anti-Neutrophil Elastase antibody 100µgabcamAb 68672 1:100
Anti-Histone H3 (citrulline R2 + R8 + R17) antibody  100µgabcamAb 51031:50
Anti-Myeloperoxidase antibody [2C7] anti-human 100 µgabcamAb 259891:50
Anti-Myeloperoxidase antibody [2D4] anti-mouse 50 µgabcamAb 908101:50
Axiovision Microscopy Software Zeiss4.8.2.
Blocking solution with donkey serum (READY TO USE) 50mlGeneTex GTX30972
CoverslipsMarienfeld0101202
Dako Target Retrieval Solution Citrate pH6 (x10)DakoS2369
DAPI 25 mgRoth6335.11:25000
DCS antibody dilution 500 mLDCS diagnosticsDCS AL120R500
Donkey ant goat Cy3JacksonImmunoResearch705-165-1471:200
Donkey anti rabbit AF647JacksonImmunoResearch711-605-1521:200
Donkey anti rabbit Cy3JacksonImmunoResearch711-165-1521:200
Fluoromount-G Mounting MediumInvitrogen00-4958-02
Glass slide rackRothH552.1
Human/Mouse MPO AntibodyR&D SystemsAF 3667 1:20
Hydrophobic PenKISKERMKP-1
Isokontrolle Rabbit IgG Polyclonal 5mgabcamAb 374151:2000 and 1:250
MaxBlock Autofluorescence Reducing Reagent Kit (RUO) 100 mlMaxvisionMB-L
Microscopy cameraZeissAxioCamHR3
MicrowaveBoschHMT84M421
Mouse IgG1 negative controlDakoX0931 Aglient1:50 and 1:5
Normal Goat IgG ControlR&D SystemsAB-108-C 1:100
PBS Phosphate buffered saline (10x)Sigma-AldrichP-3813
PMP staining jarRoth2292.2
Recombinant Anti-Histone H3 (citrulline R8) antibody 100µgabcamAb 2194061:100
Recombinant Rabbit IgG, monoclonal [EPR25A] - Isotype Control 200µgabcamAb 1727301:300
ROTI HistolRoth 6640
SuperFrost Plus slidesR. Langenbrinck03-0060
TBS Tris buffered saline (x10)Sigma-AldrichT1503
Triton X-100Sigma-AldrichT8787
Tween 20Sigma-AldrichP9416
Water bathMemmert830476
Water bath rice cookerreishungerRCP-30
Wet chamberWeckert Labortechnik600016
Zeiss Widefield microscopeZeissAxiovert 200M

References

  1. Brinkmann, V., et al. Neutrophil extracellular traps kill bacteria. Science. 303 (5663), 1532-1535 (2004).
  2. Urban, C. F., et al. Neutrophil extracellular traps contain calprotect....

Explore More Articles

Immunofluorescence ImagingNeutrophil Extracellular TrapsNETsHuman TissueMouse TissueAntibody SelectionEpitope MaskingAutofluorescenceStandardized ProtocolAntigen RetrievalPermeabilizationCitrullinated Histone 3Autofluorescence reducing AgentTissue ImagingTissue StainingElectron MicroscopyAutoimmune DiseasesSepsisInflammation

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved