A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Bioengineering
Three-dimensional (3D) encapsulation of spheroids is crucial to adequately replicate the tumor microenvironment for optimal cell growth. Here, we designed an in vitro 3D glioblastoma model for spheroid encapsulation to mimic the tumor extracellular microenvironment. First, we formed square pyramidal microwell molds using polydimethylsiloxane. These microwell molds were then used to fabricate tumor spheroids with tightly controlled sizes from 50-500 μm. Once spheroids were formed, they were harvested and encapsulated in polyethylene glycol (PEG)-based hydrogels. PEG hydrogels are a versatile platform for spheroid encapsulation, as hydrogel properties such as stiffness, degradability, and cell adhesiveness can be tuned independently. Here, we used a representative soft (~8 kPa) hydrogel to encapsulate glioblastoma spheroids. Finally, a method to stain and image spheroids was developed to obtain high-quality images via confocal microscopy. Due to the dense spheroid core and relatively sparse periphery, imaging can be difficult, but using a clearing solution and confocal optical sectioning helps alleviate these imaging difficulties. In summary, we show a method to fabricate uniform spheroids, encapsulate them in PEG hydrogels and perform confocal microscopy on the encapsulated spheroids to study spheroid growth and various cell-matrix interactions.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved