A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here we describe protocols for three types of avian embryonic skin explant cultures that can be used to examine tissue interactions, 4D imaging timelapse movie (3D plus time), global or local perturbation of molecular function, and systems biology characterization.
The developing avian skin during embryogenesis is a unique model that can provide valuable insights into tissue patterning. Here three variations on skin explant cultures to examine different aspects of skin development are described. First, ex vivo organ cultures and manipulations offer researchers opportunities to observe and study the development of feather buds directly. Skin explant culture can grow for 7 days enabling direct analysis of cellular behavior and 4D imaging at intervals during this growth period. This also allows for physical and molecular manipulations of culture conditions to visualize tissue response. For example, growth factor-coated beads can be applied locally to induce changes in feather patterning in a limited area. Alternatively, viral transduction can be delivered globally in the culture media to up or downregulate gene expression. Second, the skin recombination protocol allows researchers to investigate tissue interactions between the epidermis and mesenchyme that are derived from different skin regions, different life stages, or different species. This affords an opportunity to test the time window in which the epithelium is competent to respond to signals and its ability to form different skin appendages in response to signals from different mesenchymal sources. Third, skin reconstitution using dissociated dermal cells overlaid with intact epithelium resets skin development and enables the study of the initial processes of periodic patterning. This approach also enhances our ability to manipulate gene expression among the dissociated cells before creating the reconstituted skin explant. This paper provides the three culture protocols and exemplary experiments to demonstrate their utility.
Avian embryo skin development is an excellent model for studying the mechanisms of morphogenesis because of the distinct patterns and the accessibility to microsurgery and manipulation1,2. However, evaluating cellular and molecular events in intact tissues can be difficult because the presence of extraneous tissues can complicate microscopic observations. Furthermore, the ability to manipulate gene expression to test their role in skin morphogenesis is not always a simple task. We find we can test gene functions using retroviral transduction with a higher success rate using skin explant models. Here we discuss the advantages of three skin explant models that have been developed.
Avian embryonic skin culture is a powerful system to assess cell behavior, gene regulation, and function during skin feather bud development3,4,5,6. It allows for the evaluation of the molecular mechanisms of feather bud development through the global addition of growth factors placed in the culture media or their local release from growth factor-coated beads. Developmental regulatory genes can also be manipulated using viral gene transduction of intact or dominant negative forms for functional studies evaluating their roles in specific morphogenetic events 7,8.
Avian epithelial-mesenchymal recombination culture enables investigators to determine the contributions of each skin component during the early stages of skin morphogenesis. Rawles' use of this approach revealed that interactions between the mesenchyme and epithelium are essential to forming skin appendages9. The mesenchyme can form condensations and the epithelium is needed to induce and maintain mesenchymal condensation formations2. Later, this approach was used to assess why Scaleless chickens fail to form feathers. The defect was discovered to be in mesenchyme10. Dhouailly performed tissue epithelial-mesenchymal recombination studies in embryos from different species. These studies provided developmental and evolutionary insights into epithelial-mesenchymal communications that promote skin morphogenesis3.
This study was used to better understand factors that control feather growth. The method also improves the visualization of cellular and molecular events involved in skin patterning that take place during feather initiation, development, and elongation along the anterior-posterior axis. When the epithelium is separated from the mesenchyme and the two components are then recombined, new interactions re-establish skin patterning. This approach allows us to evaluate mesenchymal inducing signals and epithelial competence molecules that enable the epidermis to respond to the mesenchymal signals11. The subsequent downstream molecular expression that is required for feather bud development and pattern formation can also be examined. These studies have established that the location of buds is controlled by the mesenchyme. Rotation of the epithelium 90o before recombination with the mesenchyme demonstrates that the direction of feather bud elongation is controlled by the epithelium. This method was essential for us to study the molecular mechanism regulating feather bud orientation12.
Avian skin reconstitution culture, in which the skin mesenchyme is dissociated to single cells before plating at high cell density and overlaid with intact epithelium, resets dermal cells to a primordial state. The explant then self-organizes to form a new periodic pattern independent of the previous cues13. This skin reconstitution model can be used to study the initial processes of feather periodic patterning. We used this approach to explore how modulating the ratio of mesenchymal cells to a single piece of epithelium can influence the size or number of feather buds. The number of buds was found to increase but not the size of buds as the ratio of mesenchymal cells increased. Another advantage to this approach is that mesenchymal cell viral transduction shows higher efficiency than in the other two culture conditions and can produce more obvious phenotypes.
1. Chicken skin explant culture (Figure 1)
2. Chicken skin epithelial-mesenchymal recombination (Figure 2)
3. Chicken skin reconstitution (Figure 3)
Skin explant cultures
Feather bud development from ex vivo skin organ cultures can directly be observed under the microscope. Using the skin explant culture model of chicken stage 30 dorsal skin, the placodes are visible along the midline. The morphogenetic front then gradually propagates laterally toward the skin periphery with the formation of new feather primordia. These feather primordia will develop into short feather buds after 2 days in culture and long feather buds after 4 day...
Tissue recombination provides an assay to explore the unique contributions of the epithelium and mesenchyme. In chickens, feathers begin to develop at embryonic day 7 (E7) while scales begin at E9. When E9 scale mesenchyme is recombined with E7 feather epithelium, the recombined tissue forms scales, and when E7 feather mesenchyme is recombined with E9 scale epithelium feathers are formed11. These studies have demonstrated that the mesenchyme controls the pattern formation spacing and organ identit...
The authors have no conflicts of interest to declare.
This work is supported by NIH NIAMS grant R37 AR 060306, R01 AR 047364, and RO1 AR078050. The work is also supported by a collaborative research contract between USC and China Medical University in Taiwan. We thank the USC BISC 480 Developmental Biology 2023 class for successfully testing this avian skin culture protocol during several lab modules.
Name | Company | Catalog Number | Comments |
6-well culture dish | Falcon | REF 353502 | Air-Liquid Interface (ALI) Cultures |
Cell culture inset | Falcon | REF 353090. | 0.4 µm Transparent PET Membrane |
Collagenase Type 1 | Worthington Biochemical | LS004196 | |
Dulbecco’s modified Eagle’s medium | Corning | 10-013-CV | 4.5 g/L glucose |
Ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA) | Sigma-Aldrich | E5134 | |
Fetal bovine serum | ThermoFisher | 16140-071 | |
Glucose | Sigma-Aldrich | G8270 | |
Hanks’s buffered saline solution | Gibco | 14170-112 | No calcium, no magnesium |
Penicillin/streptomycin | Gibco | 15-140-122 | |
Pogassium phosphate monobasic (KH2PO4) | Sigma-Aldrich | P5379 | |
Potassium chloride (KCl) | Sigma-Aldrich | P9333 | |
Sodium bicarbonate (NaHCO3) | Sigma-Aldrich | S6014 | |
Sodium chloride (Nacl) | EMD | CAS 7647-14-5 | |
Sodium phosphate monobasic (NaH2PO4) | Sigma-Aldrich | S0751 | |
Trypsin | Gibco | 27250-042 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved