Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Mechanically isolated stromal vascular fraction (SVF) in combination with a fibrin hydrogel offers an easy and efficient carrier for viable adipose-derived stromal cells for various indications, including tissue engineering and or wound healing purposes. Here, we present the preparation of a mechanical SVF (mSVF)-fibrin hydrogel construct for translational research and clinical application.

Abstract

The regenerative potential of adipose-derived stromal cells (ASCs) has gained significant attention in regenerative and translational research. In the past, the extraction of these cells from adipose tissue required a multistep enzyme-based process, resulting in a heterogenous cell mix consisting of ACSs and other cells, which are jointly termed the stromal vascular fraction (SVF). More recently introduced mechanical SVF (mSVF) isolation protocols are less time-consuming and bypass regulatory concerns. We recently proposed a protocol that generates mSVF rich in stromal cells based on a combination of emulsification and centrifugation. One current issue in mSVF application for wound therapy application is the lack of a scaffold providing protection from mechanical manipulation and desiccation. Fibrin hydrogels have been shown to be a useful adjunct in cell transfer for wound healing purposes in the past. In the work herein, we delineate the preparation steps of an mSVF-fibrin hydrogel construct as a novel approach for translational research and clinical application.

Introduction

Over the past few years, regenerative plastic surgery has emerged as an additional pillar of plastic surgery1. Regenerative plastic surgery aims to restore damaged tissue by transferring soluble factors, cells, and tissue harvested from the patient to promote tissue restoration in a minimally invasive manner2. Adipose-derived stem cells (ASCs) have gained attention due to their ability to differentiate into multiple mesenchymal lineages, making them a promising candidate for regenerative medicine research3. Their cytokine profile displays angiogenic, immunosuppressive, and an....

Protocol

This study was performed in accordance with the Declaration of Helsinki. All adult donors provided written informed consent to allow further use of the collected tissue samples. The protocol follows the guidelines of our institution's human research ethics committee.

1. Harvest of adipose tissue

  1. Harvest the adipose tissue by performing a standard liposuction in a conventional fat-harvesting technique described in previous publications26<.......

Representative Results

Resazurin assay
We first examined the in vitro cell viability of the mSVF cells. For this purpose, we conducted a resazurin cell viability assay on days 0, 3, and 7. The cell viability at days 0, 3, and 7 of a total of four samples are shown in Figure 1. The values of day 0 serve as the baseline and were set as 100%. At day 3, the positive control (mSVF) showed a slight decrease to 78.92% (± 5.33%), while the mSVF-fibrin hydrogel combination remained at 9.......

Discussion

The mechanical isolation of SVF provides an elegant alternative to the traditional enzymatic approach and offers broad access for clinical application29. In fact, mSVF, as proposed in the present manuscript, is already in clinical use for soft tissue treatment of scars or as an adjunct for cosmetic procedures30. The protocol presented here provides a simple method for efficient topical delivery of viable mSVF cells. While the positive control with only mSVF cells showed a t.......

Disclosures

The authors have nothing to disclose.

Acknowledgements

Bong-Sung Kim is supported by the German Research Foundation (KI 1973/2-1) and the Novartis Foundation for Medical-Biological Research (#22A046).

....

Materials

NameCompanyCatalog NumberComments
12-WellplateSarstedt83.3921
4′,6-diamidino-2-phenylindole (DAPI)BiochemicaA1001.0010
50 mL-FalconFalcon352070
Absorbent Towels, Two PackHalyard89701
Alamar blue 25 mLInvitrogenDAL1025
Albumin, Bovine (BSA)VWR0332-500G
Biotek Cytation 5 AgilentCell Imaging Multimode Microplate Reader 
CaCl2 Sigma-AldrichC5670-500G
CryostatMicrotome
DMEM with 4,5 g/L glucose,with L-Glutamine, with sodium pyruvateVWR392-0416
DPBSGibco14190-144
EpinephrinSigma-AldrichE4250
Fetal Bovine SerumBiowestS181H-500
Fibrinogen Human Plasma 100 mgSigma-Aldrich341576-100MG
FormalinFisher ScientificSF100-4
Formalin 4%Formafix1308069
FSC 22-Einbettmedium, blauBiosystems3801481S
Hematoxylin & Eosin SolutionSigma-AldrichH3136 / HT110132
Lactated Ringer’s Solution 1000 mLB BraunR5410-01
Mercedes Cannula 4mmMicroAirePAL-R404LL
NaCl 0.9%Bbraun570160
OCT Embedding Matrix 125 mLCellPathKMA-0100-00A
ParaformaldehydeFisher Scientific10342243
PBS 1%Sigma-AldrichP4474
PenStrepSigma-AldrichP4333-100ML
Petridish 150mmSarstedt83.1803
Phalloidin-iFluor 488 ReagentAbcamab176753
Sterile Syringe 20 mL LuerHENKE-JECT5200-000V0
Sterile Syringe 30 mL Luer-LockBD10521
Thrombin from Human PlasmaSigma-AldrichT6884-100UN
Tranexamic acidOrpha Swiss6837093
Tulipfilter 1.2Lencion SurgicalATLLLL
Tulipfilter 1.4Lencion SurgicalATLLLL

References

  1. Daar, A. S., Greenwood, H. L. A proposed definition of regenerative medicine. J Tissue Eng Regen Med. 1 (3), 179-184 (2007).
  2. Machens, H. G., Mailänder, P. Regenerative medicine and plastic surgery. Chirurg. 76 (5....

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Adipose derived Stromal CellsStromal Vascular FractionMechanical SVFMSVF IsolationEmulsificationCentrifugationFibrin HydrogelWound TherapyScaffold ProtectionTranslational ResearchClinical Application

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved