JoVE Logo
교수 리소스 센터

로그인

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

The Combination of Mechanically Isolated Stromal Vascular Fraction and Fibrin Hydrogel: A Processing Protocol

Published: November 17th, 2023

DOI:

10.3791/65860

1Department of Surgery, Triemli City Hospital Zurich, 2Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, 3Institute for Human Tissue Restoration, Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine
* These authors contributed equally

Mechanically isolated stromal vascular fraction (SVF) in combination with a fibrin hydrogel offers an easy and efficient carrier for viable adipose-derived stromal cells for various indications, including tissue engineering and or wound healing purposes. Here, we present the preparation of a mechanical SVF (mSVF)-fibrin hydrogel construct for translational research and clinical application.

The regenerative potential of adipose-derived stromal cells (ASCs) has gained significant attention in regenerative and translational research. In the past, the extraction of these cells from adipose tissue required a multistep enzyme-based process, resulting in a heterogenous cell mix consisting of ACSs and other cells, which are jointly termed the stromal vascular fraction (SVF). More recently introduced mechanical SVF (mSVF) isolation protocols are less time-consuming and bypass regulatory concerns. We recently proposed a protocol that generates mSVF rich in stromal cells based on a combination of emulsification and centrifugation. One current issue in mSVF application for wound therapy application is the lack of a scaffold providing protection from mechanical manipulation and desiccation. Fibrin hydrogels have been shown to be a useful adjunct in cell transfer for wound healing purposes in the past. In the work herein, we delineate the preparation steps of an mSVF-fibrin hydrogel construct as a novel approach for translational research and clinical application.

Over the past few years, regenerative plastic surgery has emerged as an additional pillar of plastic surgery1. Regenerative plastic surgery aims to restore damaged tissue by transferring soluble factors, cells, and tissue harvested from the patient to promote tissue restoration in a minimally invasive manner2. Adipose-derived stem cells (ASCs) have gained attention due to their ability to differentiate into multiple mesenchymal lineages, making them a promising candidate for regenerative medicine research3. Their cytokine profile displays angiogenic, immunosuppressive, and an....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This study was performed in accordance with the Declaration of Helsinki. All adult donors provided written informed consent to allow further use of the collected tissue samples. The protocol follows the guidelines of our institution's human research ethics committee.

1. Harvest of adipose tissue

  1. Harvest the adipose tissue by performing a standard liposuction in a conventional fat-harvesting technique described in previous publications26<.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Resazurin assay
We first examined the in vitro cell viability of the mSVF cells. For this purpose, we conducted a resazurin cell viability assay on days 0, 3, and 7. The cell viability at days 0, 3, and 7 of a total of four samples are shown in Figure 1. The values of day 0 serve as the baseline and were set as 100%. At day 3, the positive control (mSVF) showed a slight decrease to 78.92% (± 5.33%), while the mSVF-fibrin hydrogel combination remained at 9.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The mechanical isolation of SVF provides an elegant alternative to the traditional enzymatic approach and offers broad access for clinical application29. In fact, mSVF, as proposed in the present manuscript, is already in clinical use for soft tissue treatment of scars or as an adjunct for cosmetic procedures30. The protocol presented here provides a simple method for efficient topical delivery of viable mSVF cells. While the positive control with only mSVF cells showed a t.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Bong-Sung Kim is supported by the German Research Foundation (KI 1973/2-1) and the Novartis Foundation for Medical-Biological Research (#22A046).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
12-WellplateSarstedt83.3921
4′,6-diamidino-2-phenylindole (DAPI)BiochemicaA1001.0010
50 mL-FalconFalcon352070
Absorbent Towels, Two PackHalyard89701
Alamar blue 25 mLInvitrogenDAL1025
Albumin, Bovine (BSA)VWR0332-500G
Biotek Cytation 5 AgilentCell Imaging Multimode Microplate Reader 
CaCl2 Sigma-AldrichC5670-500G
CryostatMicrotome
DMEM with 4,5 g/L glucose,with L-Glutamine, with sodium pyruvateVWR392-0416
DPBSGibco14190-144
EpinephrinSigma-AldrichE4250
Fetal Bovine SerumBiowestS181H-500
Fibrinogen Human Plasma 100 mgSigma-Aldrich341576-100MG
FormalinFisher ScientificSF100-4
Formalin 4%Formafix1308069
FSC 22-Einbettmedium, blauBiosystems3801481S
Hematoxylin & Eosin SolutionSigma-AldrichH3136 / HT110132
Lactated Ringer’s Solution 1000 mLB BraunR5410-01
Mercedes Cannula 4mmMicroAirePAL-R404LL
NaCl 0.9%Bbraun570160
OCT Embedding Matrix 125 mLCellPathKMA-0100-00A
ParaformaldehydeFisher Scientific10342243
PBS 1%Sigma-AldrichP4474
PenStrepSigma-AldrichP4333-100ML
Petridish 150mmSarstedt83.1803
Phalloidin-iFluor 488 ReagentAbcamab176753
Sterile Syringe 20 mL LuerHENKE-JECT5200-000V0
Sterile Syringe 30 mL Luer-LockBD10521
Thrombin from Human PlasmaSigma-AldrichT6884-100UN
Tranexamic acidOrpha Swiss6837093
Tulipfilter 1.2Lencion SurgicalATLLLL
Tulipfilter 1.4Lencion SurgicalATLLLL

  1. Daar, A. S., Greenwood, H. L. A proposed definition of regenerative medicine. J Tissue Eng Regen Med. 1 (3), 179-184 (2007).
  2. Machens, H. G., Mailänder, P. Regenerative medicine and plastic surgery. Chirurg. 76 (5), 474-480 (2005).
  3. Zuk, P. A., et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7 (2), 211-228 (2001).
  4. Hassan, W. U., Greiser, U., Wang, W. Role of adipose-derived stem cells in wound healing. Wound Repair Regen. 22 (3), 313-325 (2014).
  5. Gir, P., Oni, G., Brown, S. A., Mojallal, A., Rohrich, R. J. Human adipose stem cells: current clinical applications. Plast Reconstr Surg. 129 (6), 1277-1290 (2012).
  6. Dominici, M., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8 (4), 315-317 (2006).
  7. Raposio, E., Ciliberti, R. Clinical use of adipose-derived stem cells: European legislative issues. Ann Med Surg (Lond). 24, 61-64 (2017).
  8. Condé-Green, A., et al. Shift toward mechanical isolation of adipose-derived stromal vascular fraction: Review of upcoming techniques. Plast Reconstr Surg Glob Open. 4 (9), e1017 (2016).
  9. Dykstra, J. A., et al. Concise review: Fat and furious: Harnessing the full potential of adipose-derived stromal vascular fraction. Stem Cells Transl Med. 6 (4), 1096-1108 (2017).
  10. Aronowitz, J. A., Lockhart, R. A., Hakakian, C. S. Mechanical versus enzymatic isolation of stromal vascular fraction cells from adipose tissue. Springerplus. 4, 713 (2015).
  11. Tonnard, P., et al. Nanofat grafting: basic research and clinical applications. Plast Reconstr Surg. 132 (4), 1017-1026 (2013).
  12. Tiryaki, K. T., Cohen, S., Kocak, P., Canikyan Turkay, S., Hewett, S. In-vitro comparative examination of the effect of stromal vascular fraction isolated by mechanical and enzymatic methods on wound healing. Aesthet Surg J. 40 (11), 1232-1240 (2020).
  13. Sun, M., et al. Adipose extracellular matrix/stromal vascular fraction gel secretes angiogenic factors and enhances skin wound healing in a murine model. Biomed Res Int. 2017, 3105780 (2017).
  14. Chen, L., et al. Autologous nanofat transplantation accelerates foot wound healing in diabetic rats. Regen Med. 14 (3), 231-241 (2019).
  15. Lin, Y. N., et al. Fat grafting for resurfacing an exposed implant in lower extremity: A case report. Medicine (Baltimore). 96 (48), e8901 (2017).
  16. Deng, C., Wang, L., Feng, J., Lu, F. Treatment of human chronic wounds with autologous extracellular matrix/stromal vascular fraction gel: A STROBE-compliant study. Medicine (Baltimore). 97 (32), e11667 (2018).
  17. Chung, M. T., et al. Micro-computed tomography evaluation of human fat grafts in nude mice. Tissue Eng Part C Methods. 19 (3), 227-232 (2013).
  18. Gonzalez, A. M., Lobocki, C., Kelly, C. P., Jackson, I. T. An alternative method for harvest and processing fat grafts: an in vitro study of cell viability and survival. Plast Reconstr Surg. 120 (1), 285-294 (2007).
  19. Kim, B. S., et al. In vivo evaluation of mechanically processed stromal vascular fraction in a chamber vascularized by an arteriovenous shunt. Pharmaceutics. 14 (2), 417 (2022).
  20. Dryden, G. W., Boland, E., Yajnik, V., Williams, S. Comparison of stromal vascular fraction with or without a novel bioscaffold to fibrin glue in a porcine model of mechanically induced anorectal fistula. Inflamm Bowel Dis. 23 (11), 1962-1971 (2017).
  21. Mahoney, C. M., Imbarlina, C., Yates, C. C., Marra, K. G. Current therapeutic strategies for adipose tissue defects/repair using engineered biomaterials and biomolecule formulations. Front Pharmacol. 9, 507 (2018).
  22. Li, Y., Meng, H., Liu, Y., Lee, B. P. Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. ScientificWorldJournal. 2015, 685690 (2015).
  23. Malafaya, P. B., Silva, G. A., Reis, R. L. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev. 59 (4-5), 207-233 (2007).
  24. Jackson, M. R. Fibrin sealants in surgical practice: An overview. Am J Surg. 182 (2 Suppl), 1s-7s (2001).
  25. Swartz, D. D., Russell, J. A., Andreadis, S. T. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am J Physiol Heart Circ Physiol. 288 (3), H1451-H1460 (2005).
  26. Alharbi, Z., et al. Conventional vs. micro-fat harvesting: how fat harvesting technique affects tissue-engineering approaches using adipose tissue-derived stem/stromal cells. J Plast Reconstr Aesthet Surg. 66 (9), 1271-1278 (2013).
  27. Coleman, S. R. Structural fat grafts: the ideal filler. Clin Plast Surg. 28 (1), 111-119 (2001).
  28. Feldman, A. T., Wolfe, D. Tissue processing and hematoxylin and eosin staining. Methods Mol Biol. 1180, 31-43 (2014).
  29. Raposio, E., Bertozzi, N. How to isolate a ready-to-use adipose-derived stem cells pellet for clinical application. Eur Rev Med Pharmacol Sci. 21 (18), 4252-4260 (2017).
  30. Pallua, N., Kim, B. S. Microfat and lipoconcentrate for the treatment of facial scars. Clin Plast Surg. 47 (1), 139-145 (2020).
  31. Pallua, N., Grasys, J., Kim, B. S. Enhancement of progenitor cells by two-step centrifugation of emulsified lipoaspirates. Plast Reconstr Surg. 142 (1), 99-109 (2018).
  32. Lehnhardt, M., et al. Major and lethal complications of liposuction: a review of 72 cases in Germany between 1998 and 2002. Plast Reconstr Surg. 121 (6), 396e-403e (2008).
  33. Shoshani, O., et al. The effect of lidocaine and adrenaline on the viability of injected adipose tissue--an experimental study in nude mice. J Drugs Dermatol. 4 (3), 311-316 (2005).
  34. Girard, A. C., et al. New insights into lidocaine and adrenaline effects on human adipose stem cells. Aesthetic Plast Surg. 37 (1), 144-152 (2013).
  35. Grambow, F., et al. The impact of lidocaine on adipose-derived stem cells in human adipose tissue harvested by liposuction and used for lipotransfer. Int J Mol Sci. 21 (8), 2869 (2020).
  36. Xiao, S., et al. Mechanical micronization of lipoaspirates combined with fractional CO2 laser for the treatment of hypertrophic scars. Plast Reconstr Surg. 151 (3), 549-559 (2023).
  37. Zhang, J., et al. Adipose tissue-derived pericytes for cartilage tissue engineering. Curr Stem Cell Res Ther. 12 (6), 513-521 (2017).
  38. Yao, Y., et al. Adipose extracellular matrix/stromal vascular fraction gel: A novel adipose tissue-derived injectable for stem cell therapy. Plast Reconstr Surg. 139 (4), 867-879 (2017).
  39. Williams, S. K., Touroo, J. S., Church, K. H., Hoying, J. B. Encapsulation of adipose stromal vascular fraction cells in alginate hydrogel spheroids using a direct-write three-dimensional printing system. Biores Open Access. 2 (6), 448-454 (2013).
  40. Denost, Q., et al. Colorectal wall regeneration resulting from the association of chitosan hydrogel and stromal vascular fraction from adipose tissue. J Biomed Mater Res A. 106 (2), 460-467 (2018).
  41. Nilforoushzadeh, M. A., et al. Engineered skin graft with stromal vascular fraction cells encapsulated in fibrin-collagen hydrogel: A clinical study for diabetic wound healing. J Tissue Eng Regen Med. 14 (3), 424-440 (2020).
  42. Lin, S. D., et al. Injected implant of uncultured stromal vascular fraction loaded onto a collagen gel: In vivo study of adipogenesis and long-term outcomes. Ann Plast Surg. 76 (Suppl 1), S108-S116 (2016).
  43. Lv, X., et al. Comparative efficacy of autologous stromal vascular fraction and autologous adipose-derived mesenchymal stem cells combined with hyaluronic acid for the treatment of sheep osteoarthritis. Cell Transplant. 27 (7), 1111-1125 (2018).
  44. de Boer, M. T., Boonstra, E. A., Lisman, T., Porte, R. J. Role of fibrin sealants in liver surgery. Dig Surg. 29 (1), 54-61 (2012).
  45. Fuller, C. Reduction of intraoperative air leaks with Progel in pulmonary resection: a comprehensive review. J Cardiothorac Surg. 8, 90 (2013).
  46. Ratnalingam, V., Eu, A. L., Ng, G. L., Taharin, R., John, E. Fibrin adhesive is better than sutures in pterygium surgery. Cornea. 29 (5), 485-489 (2010).
  47. Sierra, D. H. Fibrin sealant adhesive systems: a review of their chemistry, material properties and clinical applications. J Biomater Appl. 7 (4), 309-352 (1993).
  48. Rampersad, S. N. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors (Basel). 12 (9), 12347-12360 (2012).

This article has been published

Video Coming Soon

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2024 MyJoVE Corporation. 판권 소유