JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Cancer Research

Multiplexed Live-Cell Imaging for Drug Responses in Patient-Derived Organoid Models of Cancer

Published: January 5th, 2024

DOI:

10.3791/66072

1Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, 2Cancer Biology Graduate Program, Carver College of Medicine, University of Iowa, 3The Institute of Cancer Research: and the Royal Marsden NHS Foundation Trust, 4Department of Radiation Oncology, Carver College of Medicine, University of Iowa, 5Division of Molecular Medicine, Departments of Internal Medicine and Obstetrics and Gynecology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 6Agilent Technologies, 7Holden Comprehensive Cancer Center, University of Iowa
* These authors contributed equally

Patient-derived tumor organoids are a sophisticated model system for basic and translational research. This methods article details the use of multiplexed fluorescent live-cell imaging for simultaneous kinetic assessment of different organoid phenotypes.

Patient-derived organoid (PDO) models of cancer are a multifunctional research system that better recapitulates human disease as compared to cancer cell lines. PDO models can be generated by culturing patient tumor cells in extracellular basement membrane extracts (BME) and plating them as three-dimensional domes. However, commercially available reagents that have been optimized for phenotypic assays in monolayer cultures often are not compatible with BME. Herein, we describe a method to plate PDO models and assess drug effects using an automated live-cell imaging system. In addition, we apply fluorescent dyes that are compatible with kinetic measurements to quantify cell health and apoptosis simultaneously. Image capture can be customized to occur at regular time intervals over several days. Users can analyze drug effects in individual Z-plane images or a Z Projection of serial images from multiple focal planes. Using masking, specific parameters of interest are calculated, such as PDO number, area, and fluorescence intensity. We provide proof-of-concept data demonstrating the effect of cytotoxic agents on cell health, apoptosis, and viability. This automated kinetic imaging platform can be expanded to other phenotypic readouts to understand diverse therapeutic effects in PDO models of cancer.

Patient-derived tumor organoids (PDOs) are rapidly emerging as a robust model system to study cancer development and therapeutic responses. PDOs are three-dimensional (3D) cell culture systems that recapitulate the complex genomic profile and architecture of the primary tumor1,2. Unlike traditional two-dimensional (2D) cultures of immortalized cancer cell lines, PDOs capture and maintain intratumoral heterogeneity3,4, making them a valuable tool for both mechanistic and translational research. Although PDOs are becoming an increasingly popular model sy....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Studies using human tumor specimens were reviewed and approved by the University of Iowa Institutional Review Board (IRB), protocol #201809807, and performed in accordance with the ethical standards as laid down in the 1964 Helsinki Declaration and its later amendments. Informed consent was obtained from all subjects participating in the study. Inclusion criteria include a diagnosis of cancer and the availability of tumor specimens.

1. Plating intact PDOs in a 96-well plate

.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Our objective was to demonstrate the feasibility of using multiplexed live-cell imaging to assess PDO therapeutic response. Proof of concept experiments were performed in two separate PDO models of endometrial cancer: ONC-10817 and ONC-10811 (see Supplementary Figure 1 and Supplementary Figure 2 for ONC-10811 data). Apoptosis (annexin V staining) and cytotoxicity (Cytotox Green uptake) were kinetically monitored in response to the apoptosis-inducing agent, staurosporine. Specifically, PD.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

PDO cultures are becoming an increasingly popular in vitro model system due to their ability to reflect cellular responses and behaviors2. Significant advances have been made in PDO generation, culture, and expansion techniques, yet methods to analyze therapeutic responses have lagged. Commercially available 3D viability kits are lytic endpoint assays, missing out on potentially valuable kinetic response data and limiting subsequent analyses by other methods8. Emerging stud.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We are grateful to the Tissue Procurement Core and Dr. Kristen Coleman at the University of Iowa for providing patient tumor specimens and to Dr. Sofia Gabrilovich in the Department of Obstetrics and Gynecology for assisting with PDO model generation. We also thank Dr. Valerie Salvatico (Agilent, USA) for critical analysis of the manuscript. We acknowledge the following funding sources: NIH/NCI CA263783 and DOD CDMRP CA220729P1 to KWT; Cancer Research UK, Prostate Cancer UK, Prostate Cancer Foundation and Medical Research Council to JSdB. The funders had no role in the design or analysis of experiments or decision to publish.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
1.5 mL microcentrfuge tubeDot Scientific Inc1008113
15 mL conical centrifuge tubeSarstedt62.554.100
554 NM LED CubeAgilent1225012
96-well plateCorning Costar3596Prewarmed to 37 °C
96-well plateAgilent204626-100Prewarmed to 37 °C
A83-01Tocris2939Final concentration is 500 nM (component of organoid culture media)
Advanced DMEM/F-12Gibco12634-010component of organoid culture media
B27 SupplementGibco17504044Final concentration is 1x (component of organoid culture media)
BioTek BioSpa 8 Automated IncubatorAgilentBIOSPAG-SNTabletop incubator; BioSpa OnDemand scheduling software comunicates with Gen5 to transfer plates between the BioSpa and the Cytation 5 for imaging (this protocol uses version 1.01.10)
BioTek Cytation 5 Cell Imaging Multimode ReaderAgilentCYT5PW-SNPlate reader; Gen5 software is used for this device (this protocol uses version 3.12.08)
Cultrex UltiMatrix Reduced Growth Factor Basement Membrane ExtractR&D SystemsBME001-10
Daunorubicin HClSigma-AldrichS3035Reconstituted in DMSO
Dimethyl sulfoxideSigma-AldrichD2438
EDTA (0.5 M)Thermo FisherAM9260G
ForskolinTocris1099Final concentration is 10 µM (component of organoid culture media)
GlutamaxGibco35050-061Final concentration is 1x (component of organoid culture media)
HEPESGibco15630-080Final concentration is 10 mM (component of organoid culture media)
Human EGF, Animal-Free Recombinant ProteinGibcoAF-100-15-1MGFinal concentration is 0.5 ng/mL (component of organoid culture media)
Human FGF-10 Recombinant ProteinGibco100-26-1MGFinal concentration is 10 ng/mL (component of organoid culture media)
Human R-Spondin 1 Recombinant ProteinGibco120-38-5UGFinal concentration is 250 ng/mL (component of organoid culture media)
Hydrocortisone Stock SolutionStemCell Technologies7926Final concentration is 500 ng/mL (component of organoid culture media)
Imaging Filter Cube- GFPAgilent1225101
Imaging Filter Cube- TRITCAgilent1225125
Imaging LED GFP/CFPAgilent1225001
Incucyte Annexin V Red DyeSartorius4641Reconstituted in organoid culture media
Incucyte Cytotox Green DyeSartorius4633DMSO solution
N-Acetyl-L-cysteineSigma-AldrichA7250Final concentration is 1.25 mM (component of organoid culture media)
Nexcelom Bioscience ViaStain AOPI Staining SolutionFisher-Scientific13366169Add 1:50 volume
NicotinamideSigma-AldrichN0636Final concentration is 10 mM (component of organoid culture media)
NogginR&D Systems6057-NGFinal concentration is 100 ng/mL (component of organoid culture media)
Penicillin-StreptomycinGibco15140122Final concentration is 10 units/mL (component of organoid culture media)
Phosphate Buffered Saline (1x)Gibco14190-144
PrimocinInvivoGenant-pm-05Final concentration is 100 µg/mL (component of organoid culture media)
Recombinant Human Heregulinβ-1Pepro Tech100-03Final concentration is 37.5 ng/mL (component of organoid culture media)
Staurosporine solution from Streptomyces sp.Sigma-AldrichS6942
TrypLE ExpressLife Technologies12604013
Y-27632, CAS 331752-47-7Sigma-Aldrich688000Final concentration is 5 µM (component of organoid culture media)
β-EstradiolSigma-AldrichE2758Final concentration is 100 nM (component of organoid culture media)

  1. Drost, J., Clevers, H. Organoids in cancer research. Nat Rev Cancer. 18 (7), 407-418 (2018).
  2. Lohmussaar, K., Boretto, M., Clevers, H. Human-derived model systems in gynecological cancer research. Trends Cancer. 6 (12), 1031-1043 (2020).
  3. Sachs, N., et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 172 (1-2), 373-386 (2018).
  4. de Witte, C. J., et al. Patient-derived ovarian cancer organoids mimic clinical response and exhibit heterogeneous inter- and intrapatient drug responses. Cell Rep. 31 (11), 107762 (2020).
  5. Adan, A., Kiraz, Y., Baran, Y. Cell proliferation and cytotoxicity assays. Curr Pharm Biotechnol. 17 (14), 1213-1221 (2016).
  6. Driehuis, E., Kretzschmar, K., Clevers, H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc. 15 (10), 3380-3409 (2020).
  7. Alzeeb, G., et al. Gastric cancer cell death analyzed by live cell imaging of spheroids. Sci Rep. 12 (1), 1488 (2022).
  8. Deben, C., et al. OrBITS: label-free and time-lapse monitoring of patient derived organoids for advanced drug screening. Cell Oncol (Dordr). 46 (2), 299-314 (2023).
  9. Tamura, H., et al. Evaluation of anticancer agents using patient-derived tumor organoids characteristically similar to source tissues). Oncol Rep. 40 (2), 635-646 (2018).
  10. Le Compte, M., et al. Multiparametric tumor organoid drug screening using widefield live-cell imaging for bulk and single-organoid analysis. J Vis Exp. 190, 64434 (2022).
  11. Hanson, K. M., Finkelstein, J. N. An accessible and high-throughput strategy of continuously monitoring apoptosis by fluorescent detection of caspase activation. Anal Biochem. 564-565, 96-101 (2019).
  12. Isherwood, B., et al. Live cell in vitro and in vivo imaging applications: accelerating drug discovery. Pharmaceutics. 3 (2), 141-170 (2011).
  13. Bi, J., et al. Successful patient-derived organoid culture of gynecologic cancers for disease modeling and drug sensitivity testing. Cancers (Basel). 13 (12), 2901 (2021).
  14. Binaschi, M., Zunino, F., Capranico, G. Mechanism of action of DNA topoisomerase inhibitors. Stem Cells. 13 (4), 369-379 (1995).
  15. Park, Y. Y., Ahn, J. H., Cho, M. G., Lee, J. H. ATP depletion during mitotic arrest induces mitotic slippage and APC/C(Cdh1)-dependent cyclin B1 degradation. Exp Mol Med. 50 (4), 1-14 (2018).
  16. Lukonin, I., Zinner, M., Liberali, P. Organoids in image-based phenotypic chemical screens. Exp Mol Med. 53 (10), 1495-1502 (2021).
  17. Herpers, B., et al. Functional patient-derived organoid screenings identify MCLA-158 as a therapeutic EGFR x LGR5 bispecific antibody with efficacy in epithelial tumors. Nat Cancer. 3 (4), 418-436 (2022).
  18. Ramm, S., et al. High-throughput live and fixed cell imaging method to screen matrigel-embedded organoids. Organoids. 2 (1), 1-19 (2023).
  19. Dekkers, J. F., et al. High-resolution 3D imaging of fixed and cleared organoids. Nat Protoc. 14 (6), 1756-1771 (2019).
  20. Van Hemelryk, A., et al. Viability analysis and high-content live-cell imaging for drug testing in prostate cancer xenograft-derived organoids. Cells. 12 (10), 1377 (2023).
  21. Bi, J., et al. Advantages of tyrosine kinase anti-angiogenic cediranib over bevacizumab: Cell cycle abrogation and synergy with chemotherapy. Pharmaceuticals (Basel). 14 (7), 682 (2021).
  22. Bi, J., et al. Blocking autophagy overcomes resistance to dual histone deacetylase and proteasome inhibition in gynecologic cancer). Cell Death Dis. 13 (1), 59 (2022).
  23. Guo, C., et al. B7-H3 as a Therapeutic target in advanced prostate cancer. Eur Urol. 83 (3), 224-238 (2023).
  24. Gil, V., et al. HER3 is an actionable target in advanced prostate cancer. Cancer Res. 81 (24), 6207-6218 (2021).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved