Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Described here is a method that can be used to image five or more fluorescent parameters by immunofluorescent microscopy. An analysis pipeline for extracting single cells from these images and conducting single-cell analysis through flow cytometry-like gating strategies is outlined, which can identify cell subsets in tissue sections.

Abstract

The usage of histology to investigate immune cell diversity in tissue sections such as those derived from the central nervous system (CNS) is critically limited by the number of fluorescent parameters that can be imaged at a single time. Most immune cell subsets have been defined using flow cytometry by using complex combinations of protein markers, often requiring four or more parameters to conclusively identify, which is beyond the capabilities of most conventional microscopes. As flow cytometry dissociates tissues and loses spatial information, there is a need for techniques that can retain spatial information while interrogating the roles of complex cell types. These issues are addressed here by creating a method for expanding the number of fluorescent parameters that can be imaged by collecting the signals of spectrally overlapping fluorophores and using spectral unmixing to separate the signals of each individual fluorophore. These images are then processed using an analysis pipeline to take high-parameter histology images and extract single cells from these images so that the unique fluorescent properties of each cell can be analyzed at a single-cell level. Using flow cytometry-like gating strategies, cells can then be profiled into subsets and mapped back onto the histology sections to not only quantify their abundance, but also establish how they interact with the tissue environment. Overall, the simplicity and potential of using histoflow cytometry to study complex immune populations in histology sections is demonstrated.

Introduction

Inflammation driven by cells of the immune system and glial cells can contribute to chronic disorders of the CNS where each population can promote the activity of the other1,2,3. Understanding how the immune system interacts with these elements of the CNS to promote CNS inflammation is currently a major topic of interest and has been greatly facilitated by high-parameter techniques such as single-cell RNA sequencing. Through single-cell RNA sequencing, we have discovered that there is extensive communication occurring between glial cells and the immune system in several CNS d....

Protocol

This protocol does not cover sectioning tissues for histology; please see Jain et al.18 or19 for descriptions of how to section tissues for histology. This protocol can be used with any sectioned tissues on glass slides. This article uses inguinal lymph nodes isolated from an immunized animal as described previously18. The procedure and timeline for this protocol are summarized in Figure 1. The details of the reagents an.......

Representative Results

figure-representative results-68
Figure 1: Histoflow cytometry workflow. Tissue sections are stained with spectrally overlapping dyes (step 1). Images are collected across individual excitation lasers paired with tunable bandpass filters to minimize spectral bleed-through between fluorophores (step 2). Spectral bleed-through between channels is corrected based on a compensatio.......

Discussion

Here, the use of histoflow cytometry is described, a technique that has been validated previously18. It is demonstrated that when staining tissue sections with spectrally overlapping dyes, that bleed-through across channels can be removed using spectral compensation, resulting in a greater number of fluorescent parameters being clearly resolved than would normally be possible through conventional methods. As high-parameter histology images are difficult to analyze using conventional methods, an an.......

Acknowledgements

We thank the Hotchkiss Brain Institute Advanced Microscopy Platform for imaging infrastructure and expertise. RWJ was supported by postdoctoral fellowship funding from the University of Calgary Eyes High program and by a Multiple Sclerosis Society of Canada and Roche Canada unrestricted educational fellowship. VWY received salary support from the Canada Research Chair Tier 1 program. This work was supported by operating funds from the Canadian Institutes of Health Research Grant 1049959, the Multiple Sclerosis Society of Canada Grant 3236, and the US Department of Defense of the Congressionally Directed Multiple Sclerosis Research Program. Figure 1 is....

Materials

NameCompanyCatalog NumberComments
100% EthanolSigma676829-1L
4% PFAElectron Microscopy Sciences157-4
AnacondaN/AN/Ahttps://www.anaconda.com/download
Bovine Serum AlbuminSigmaA4503-50G
Cold fish stain gelatin SigmaG7765
Collating multichannel data from Imaris.ipynb scriptN/AN/Ahttps://github.com/elliottcalgary/Histoflow-Cytometry-Analysis-
Convert FlowJo output to txt file for Cell selection in Imaris.ipynb scriptN/AN/Ahttps://github.com/elliottcalgary/Histoflow-Cytometry-Analysis-
Donkey anti-rat Alexa Fluor 647JacksonImmunoResearch712-605-1531:300 concentration
Donkey anti-rat DyLight 405Jackson ImmunoResearch712-475-1531:200 concentration
Donkey SerumJacksonImmunoResearch017-000-001
F(ab')2-Goat anti-Mouse IgG PerCP-eFluor 710Thermofisher46-4010-821:25 concentration
FIJIN/AN/Ahttps://imagej.net/software/fiji/
FlowJoFlowJo LLCSoftware 4
Fluorescence spectraviewerhttps://www.thermofisher.com/order/fluorescence-spectraviewer/#!/
Fluoromount-GSouthern Biotech0100-01
Fresh frozen human tonsil sectionsamsbioHF-707
Glass coverslipVWR48393 106
Goat anti-human IgA Alexa Fluor 488JacksonImmunoResearch109-546-0111:400 concentration
Goat anti-human IgG Cy3JacksonImmunoResearch709-166-0981:400 concentration
Goat anti-human IgM Dylight 405JacksonImmunoResearch109-476-1291:300 concentration
Goat anti-rabbit A546Thermo Fisher ScientificA-110351:250 concentration
Goat anti-rabbit IgG PE-Alexa Fluor 610ThermofisherA-209811:250 concentration
Horse SerumSigmaH1138
IlastikN/AN/Ahttps://www.ilastik.org/
Ilastik FIJI pluginN/AN/Ahttps://www.ilastik.org/documentation/fiji_export/plugin
Imaris File ConverterOxford InstrumentsSoftware 2
Imaris with cell moduleOxford InstrumentsSoftware 3
kimwipeKimtech34155
LasX Life Science softwareLeicaSoftware 1
Mouse anti-human CD20VWRCA95024-3221:40 concentration
Mouse anti-human CD38 APC-R700BD Biosciences5649801:20 concentration
Normal Goat SerumJacksonImmunoResearch005-000-001
Normal Mouse SerumJacksonImmunoResearch015-000-001
Normal Rabbit SerumJacksonImmunoResearch011-000-001
Normal Rat SerumJacksonImmunoResearch012-000-120
Nuclear YellowAbcamab138903Dissolve in DMSO at a concentration of 2 mg/ml and store at 4°C in the dark
PAP penCedarlaneMU22
PBSGibco10010-023
Rabbit anti-human Ki67Abcamab155801:500 concentration
Rabbit anti-mouse Iba1Wako019-197411:500 concentration
Rat anti-human Blimp1Thermofisher14-5963-821:40 concentration
Rat anti-mouse B220 Alexa Fluor 647BioLegend1032261:250 concentration
Rat anti-mouse CD138Biolegend1425021:200 concentration
Rat anti-mouse CD3 PE-eFluor 610Thermo Fisher Scientific61-0032-821:40 concentration
Rat anti-mouse CD4 Alexa Fluor 488BioLegend1005291:200 concentration
Rat anti-mouse CD45 allophycocyanin-R700BD Biosciences5654781:50 concentration
Rat anti-mouse IgD PerCP-eFluor 710Thermo Fisher Scientific46-5993-821:50 concentration
SP8 Confocal microscopeLeica
Triton X-100SigmaX100-500ml
TrueblackBiotium23007
Tween-20SigmaP7949-500ml
Ultracomp ebeadsThermofisher01-2222-42

References

  1. Bar-Or, A., Li, R. Cellular immunology of relapsing multiple sclerosis: interactions, checks, and balances. Lancet Neurol. 20 (6), 470-483 (2021).
  2. Borst, K., Dumas, A. A., Prinz, M. Microglia: Immune and non-immune functio....

Explore More Articles

HistologyHistoflow CytometryImmune Cell DiversityCentral Nervous SystemFlow CytometryFluorescent ParametersSpectral UnmixingHigh parameter ImagingSingle cell AnalysisCell ProfilingTissue Environment

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved