S'identifier

Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.

Dans cet article

  • Résumé
  • Résumé
  • Introduction
  • Protocole
  • Résultats Représentatifs
  • Discussion
  • Déclarations de divulgation
  • Remerciements
  • matériels
  • Références
  • Réimpressions et Autorisations

Résumé

Ce protocole décrit une plate-forme de culture cellulaire reconfigurable à base de membranes qui intègre le format à puits ouvert avec des capacités d’écoulement de fluide. Cette plateforme est compatible avec les protocoles standard et permet des transitions réversibles entre les modes de culture à puits ouvert et microfluidique, répondant aux besoins des laboratoires d’ingénierie et de biosciences.

Résumé

Les systèmes microphysiologiques sont des plateformes de culture cellulaire miniaturisées utilisées pour imiter la structure et la fonction des tissus humains en laboratoire. Cependant, ces plateformes n’ont pas été largement adoptées dans les laboratoires de biosciences où les approches membranaires à puits ouverts servent de référence pour imiter les barrières tissulaires, malgré l’absence de capacités d’écoulement des fluides. Ce problème peut être principalement attribué à l’incompatibilité des systèmes microphysiologiques existants avec les protocoles et outils standard développés pour les systèmes à puits ouverts.

Ici, nous présentons un protocole pour créer une plate-forme membranaire reconfigurable avec une structure à puits ouverts, une capacité d’amélioration de l’écoulement et une compatibilité avec les protocoles conventionnels. Ce système utilise une approche d’assemblage magnétique qui permet une commutation réversible entre les modes puits ouverts et microfluidique. Grâce à cette approche, les utilisateurs ont la possibilité de commencer une expérience dans le format de puits ouvert en utilisant des protocoles standard et d’ajouter ou de supprimer des capacités d’écoulement selon les besoins. Pour démontrer l’utilisation pratique de ce système et sa compatibilité avec les techniques standard, une monocouche de cellules endothéliales a été établie dans un format à puits ouvert. Le système a été reconfiguré pour introduire un flux de fluide, puis est passé au format à puits ouvert pour effectuer l’immunomarquage et l’extraction de l’ARN. En raison de sa compatibilité avec les protocoles conventionnels à puits ouverts et de sa capacité d’amélioration de l’écoulement, cette conception reconfigurable devrait être adoptée par les laboratoires d’ingénierie et de biosciences.

Introduction

Les barrières vasculaires servent d’interface critique qui sépare le compartiment sanguin des tissus environnants. Ils jouent un rôle essentiel dans la préservation de l’homéostasie en attirant les cellules immunitaires, en contrôlant la perméabilité moléculaire et en protégeant contre l’intrusion d’agents pathogènes dans les tissus 1,2. Des modèles de culture in vitro ont été développés pour imiter le microenvironnement in vivo, permettant des études systématiques sur les facteurs et les conditions qui ont un impact sur les propriétés de barrière à l’état sain et malade 3....

Protocole

Cette conception peut être utilisée dans différents modes en fonction des exigences expérimentales et des préférences de l’utilisateur final. Avant chaque expérience, consultez l’organigramme de décision présenté à la figure 2 pour déterminer les étapes et les modules nécessaires au protocole. Par exemple, si l’utilisateur a l’intention de conserver le format à puits ouvert tout au long d’une expérience pour le comparer directement avec le système de type Transwell, le gabarit de motif n’est pas nécessaire pour l’ensemencement cellulaire. Le module de base est disponible dans le commerce (voir Tableau des matériaux), et l....

Résultats Représentatifs

Le module central à puits ouvert est initialement positionné dans une cavité spécifique créée par un boîtier inférieur et une lamelle, comme illustré à la figure 6A. Ensuite, le module de flux, qui comprend un microcanal et des ports d’accès, est inséré dans le puits du module central. Le module d’écoulement est solidement scellé contre la couche de support en silicium de la membrane en raison de la force d’attraction magnétique entre les aimants intégrés dans les bo?.......

Discussion

L’objectif de ce protocole est de développer une méthode pratique pour intégrer les capacités d’écoulement dans une plate-forme à puits ouvert dotée d’une nanomembrane ultrafine. Dans cette conception, une approche de verrouillage magnétique est utilisée, permettant de basculer entre les modes puits ouvert et fluidique pendant les expériences et combinant les avantages des deux approches. Contrairement aux plates-formes conventionnelles à liaison permanente, le verrouillage magnétique permet de démonte.......

Déclarations de divulgation

J.L.M. est cofondateur de SiMPore, Inc. et détient une participation dans la société. SiMPore commercialise les technologies à base de silicium ultramince, y compris les membranes utilisées dans cette étude.

Remerciements

Cette recherche a été financée en partie par le National Institute of Health dans le cadre des subventions R43GM137651, R61HL154249, R16GM146687 et de la subvention CBET 2150798 de la NSF. Les auteurs remercient l’atelier d’usinage RIT pour la fabrication de moules en aluminium. Le contenu relève de la seule responsabilité des auteurs et ne représente pas nécessairement les opinions officielles des National Institutes of Health.

....

matériels

NameCompanyCatalog NumberComments
0.5 x 0.86 Micro Flow tubesLanger InstrumentsWX10-14 & DG Series
1 mm Disposable Biopsy Punches, Integra MiltexVWR95039-090
1x PBS 7.4 pHThermoFisher Scientific10010023
20 GAUGE IT SERIES DISPENSING TIPJensen GlobalJG20-1.5X
21 GAUGE NT PREMIUM SERIES ANGLED DISPENSING TIPJensen GlobalJG21-1.0HPX-90
3M 467 MP Pressure senstitive adhesive (PSA)DigiKey3M9726-ND
3M 468 MP Pressure senstitive adhesive (PSA)DigiKey3M9720-ND
AlexaFluor 488 conjugated phalloidinThermoFisher ScientificA12379 
Applied Biosystems TaqMan Fast Advanced Master MixThermo Fisher Scientific4444556
Bovine Serum Albumin (BSA), Fraction V, 98%, Reagent grade, Alfa Aesar, Size = 10 gVWRAAJ64100-09
Clear Scratch- and UV-Resistant Cast Acrylic SheetMcMaster-Carr8560K17112" x 12" x 1/16"
Clear Scratch- and UV-Resistant Cast Acrylic SheetMcMaster-Carr8589K3112" x 12" x 3/32"
Clear Scratch- and UV-Resistant Cast Acrylic SheetMcMaster-Carr8560K19112" x 12" x 7.64"
Corning Fibronectin, Human, 1 mgCorning47743-728
Cover Glasses, Globe Scientific, L x W = 24 x 60 mmVWR10118-677
DOW SYLGARD 184 SILICONE ENCAPSULANT CLEAR 0.5 KG KITEllsworth Adhesives4019862
EGM-2 Endothelial Cell Growth Medium-2 BulletKitLonzaCC-3162
Fixture A1&A2SiMPore Inc.NA
Fixture B1&B2SiMPore Inc.NA
High Capacity cDNA Reverse Transcription Kit with RNase InhibitorThermo Fisher Scientific4374966
Human umbilical vein endothelial cells (HUVEC)ThermoFisher ScientificC0035C
LIVE/DEAD Cell Imaging Kit (488/570)Thermo Fisher ScientificR37601
Molecular Probes Hoechst 33342, Trihydrochloride, TrihydrateThermo Fisher ScientificH3570
Nickel-plated magnets (4.75 mm diameter, 0.34 kg pull force)K&J MagneticsD313/16" dia. x 1/16" thick
Paraformaldehyde, 4% w/v aq. soln., methanol free, Alfa AesarFisher Scientificaa47392-9M
Peristaltic PumpLanger InstrumentsBQ50-1J-A
Photoresist SU-8 developer solutionFisher ScientificNC9901158
PVDF syringe filtersPerkinElmer2542913
Silicon waferUniversity wafer,USA1196
SU-8 3050Fisher ScientificNC0702369
Target gene: eNOS (Hs01574659_m1)ThermoFisher Scientific4331182
Target gene: GAPDH (Hs02786624_g1)ThermoFisher Scientific4331182
Target gene: KLF2 (Hs00360439_g1)ThermoFisher Scientific4331182
Thermo Scientific Pierce 20x PBS Tween 20Thermo Fisher Scientific28352
Transport Tube Sample White caps, 5 mL, SterileVWR100500-422
TRI-reagentThermoFisher ScientificAM9738
Ultrathin Nanoporous Membrane ChipSiMPore Inc.NPSN100-1LThe design is  compatible with all of SiMPore membranes
uSiM component 1SiMPore Inc.NA
uSiM component 2SiMPore Inc.NA

Références

  1. Claesson-Welsh, L., Dejana, E., McDonald, D. M. Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. Trends in Molecular Medicine. 27 (4), 314-331 (2021).
  2. Vera, D., et al.

Réimpressions et Autorisations

Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE

Demande d’autorisation

Explorer plus d’articles

Bio ing nierienum ro 204

This article has been published

Video Coming Soon

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.