È necessario avere un abbonamento a JoVE per visualizzare questo. Accedi o inizia la tua prova gratuita.
Questo protocollo descrive una piattaforma di coltura cellulare riconfigurabile basata su membrana che integra il formato a pozzetto aperto con capacità di flusso del fluido. Questa piattaforma è compatibile con i protocolli standard e consente transizioni reversibili tra le modalità di coltura a pozzetto aperto e microfluidica, soddisfacendo le esigenze dei laboratori di ingegneria e bioscienze.
I sistemi microfisiologici sono piattaforme di coltura cellulare miniaturizzate utilizzate per imitare la struttura e la funzione dei tessuti umani in un ambiente di laboratorio. Tuttavia, queste piattaforme non hanno ottenuto un'adozione diffusa nei laboratori di bioscienze, dove gli approcci basati su membrana a pozzetto aperto fungono da gold standard per imitare le barriere tissutali, nonostante la mancanza di capacità di flusso dei fluidi. Questo problema può essere attribuito principalmente all'incompatibilità dei sistemi microfisiologici esistenti con i protocolli standard e gli strumenti sviluppati per i sistemi a pozzo aperto.
Qui, presentiamo un protocollo per la creazione di una piattaforma riconfigurabile basata su membrana con una struttura a pozzetto aperto, capacità di miglioramento del flusso e compatibilità con i protocolli convenzionali. Questo sistema utilizza un approccio di assemblaggio magnetico che consente la commutazione reversibile tra le modalità a pozzetto aperto e microfluidica. Con questo approccio, gli utenti hanno la flessibilità di iniziare un esperimento nel formato a pozzetto aperto utilizzando protocolli standard e di aggiungere o rimuovere funzionalità di flusso in base alle esigenze. Per dimostrare l'uso pratico di questo sistema e la sua compatibilità con le tecniche standard, è stato creato un monostrato di cellule endoteliali in un formato a pozzetto aperto. Il sistema è stato riconfigurato per introdurre il flusso di fluido e quindi è passato al formato a pozzetto aperto per condurre l'immunocolorazione e l'estrazione dell'RNA. Grazie alla sua compatibilità con i protocolli convenzionali a pozzo aperto e alla capacità di miglioramento del flusso, si prevede che questo design riconfigurabile sarà adottato sia dai laboratori di ingegneria che da quelli di bioscienze.
Le barriere vascolari fungono da interfaccia critica che separa il compartimento sanguigno dal tessuto circostante. Svolgono un ruolo fondamentale nel preservare l'omeostasi attirando le cellule immunitarie, controllando la permeabilità molecolare e proteggendo dall'intrusione di agenti patogeni nel tessuto 1,2. Sono stati sviluppati modelli di coltura in vitro per imitare il microambiente in vivo, consentendo indagini sistematiche sui fattori e sulle condizioni che influenzano le proprietà di barriera sia in stato sano che malato 3,4.
Questo design può essere utilizzato in varie modalità in base alle esigenze sperimentali e alle preferenze dell'utente finale. Prima di ogni esperimento, consultare il diagramma di flusso decisionale presentato nella Figura 2 per determinare i passaggi e i moduli necessari per il protocollo. Ad esempio, se l'utente intende mantenere il formato a pozzetto aperto per tutta la durata di un esperimento per confrontarlo direttamente con il sistema di tipo Transwell, lo stencil di patterning non è necessario per la semina delle cellule. Il modulo centrale è disponibile in commercio (vedi Tabella dei materiali) e la nanomembrana....
Il modulo centrale a pozzetto aperto è inizialmente posizionato all'interno di una cavità specifica creata da un alloggiamento inferiore e da un vetrino coprioggetto, come illustrato nella Figura 6A. Successivamente, il modulo di flusso, che include un microcanale e porte di accesso, viene inserito nel pozzetto del modulo centrale. Il modulo di flusso è sigillato saldamente contro lo strato di supporto in silicio della membrana a causa della forza di attrazione magnetica tra i magneti inc.......
Lo scopo di questo protocollo è quello di sviluppare un metodo pratico per incorporare le capacità di flusso in una piattaforma a pozzetto aperto con una nanomembrana ultrasottile. In questo progetto, viene utilizzato un approccio di aggancio magnetico, che consente di passare dalla modalità a pozzetto aperto a quella fluidica durante gli esperimenti e combinando i vantaggi di entrambi gli approcci. A differenza delle piattaforme convenzionali incollate in modo permanente, la chiusura magnetica consente di smontare la.......
J.L.M. è co-fondatore di SiMPore, Inc. e detiene una partecipazione azionaria nella società. SiMPore sta commercializzando le tecnologie ultrasottili a base di silicio, comprese le membrane utilizzate in questo studio.
Questa ricerca è stata finanziata in parte dal National Institute of Health con i numeri di premio R43GM137651, R61HL154249, R16GM146687 e la sovvenzione NSF CBET 2150798. Gli autori ringraziano la RIT Machine Shop per la fabbricazione di stampi in alluminio. Il contenuto è di esclusiva responsabilità degli autori e non rappresenta necessariamente il punto di vista ufficiale del National Institutes of Health.
....Name | Company | Catalog Number | Comments |
0.5 x 0.86 Micro Flow tubes | Langer Instruments | WX10-14 & DG Series | |
1 mm Disposable Biopsy Punches, Integra Miltex | VWR | 95039-090 | |
1x PBS 7.4 pH | ThermoFisher Scientific | 10010023 | |
20 GAUGE IT SERIES DISPENSING TIP | Jensen Global | JG20-1.5X | |
21 GAUGE NT PREMIUM SERIES ANGLED DISPENSING TIP | Jensen Global | JG21-1.0HPX-90 | |
3M 467 MP Pressure senstitive adhesive (PSA) | DigiKey | 3M9726-ND | |
3M 468 MP Pressure senstitive adhesive (PSA) | DigiKey | 3M9720-ND | |
AlexaFluor 488 conjugated phalloidin | ThermoFisher Scientific | A12379 | |
Applied Biosystems TaqMan Fast Advanced Master Mix | Thermo Fisher Scientific | 4444556 | |
Bovine Serum Albumin (BSA), Fraction V, 98%, Reagent grade, Alfa Aesar, Size = 10 g | VWR | AAJ64100-09 | |
Clear Scratch- and UV-Resistant Cast Acrylic Sheet | McMaster-Carr | 8560K171 | 12" x 12" x 1/16" |
Clear Scratch- and UV-Resistant Cast Acrylic Sheet | McMaster-Carr | 8589K31 | 12" x 12" x 3/32" |
Clear Scratch- and UV-Resistant Cast Acrylic Sheet | McMaster-Carr | 8560K191 | 12" x 12" x 7.64" |
Corning Fibronectin, Human, 1 mg | Corning | 47743-728 | |
Cover Glasses, Globe Scientific, L x W = 24 x 60 mm | VWR | 10118-677 | |
DOW SYLGARD 184 SILICONE ENCAPSULANT CLEAR 0.5 KG KIT | Ellsworth Adhesives | 4019862 | |
EGM-2 Endothelial Cell Growth Medium-2 BulletKit | Lonza | CC-3162 | |
Fixture A1&A2 | SiMPore Inc. | NA | |
Fixture B1&B2 | SiMPore Inc. | NA | |
High Capacity cDNA Reverse Transcription Kit with RNase Inhibitor | Thermo Fisher Scientific | 4374966 | |
Human umbilical vein endothelial cells (HUVEC) | ThermoFisher Scientific | C0035C | |
LIVE/DEAD Cell Imaging Kit (488/570) | Thermo Fisher Scientific | R37601 | |
Molecular Probes Hoechst 33342, Trihydrochloride, Trihydrate | Thermo Fisher Scientific | H3570 | |
Nickel-plated magnets (4.75 mm diameter, 0.34 kg pull force) | K&J Magnetics | D31 | 3/16" dia. x 1/16" thick |
Paraformaldehyde, 4% w/v aq. soln., methanol free, Alfa Aesar | Fisher Scientific | aa47392-9M | |
Peristaltic Pump | Langer Instruments | BQ50-1J-A | |
Photoresist SU-8 developer solution | Fisher Scientific | NC9901158 | |
PVDF syringe filters | PerkinElmer | 2542913 | |
Silicon wafer | University wafer,USA | 1196 | |
SU-8 3050 | Fisher Scientific | NC0702369 | |
Target gene: eNOS (Hs01574659_m1) | ThermoFisher Scientific | 4331182 | |
Target gene: GAPDH (Hs02786624_g1) | ThermoFisher Scientific | 4331182 | |
Target gene: KLF2 (Hs00360439_g1) | ThermoFisher Scientific | 4331182 | |
Thermo Scientific Pierce 20x PBS Tween 20 | Thermo Fisher Scientific | 28352 | |
Transport Tube Sample White caps, 5 mL, Sterile | VWR | 100500-422 | |
TRI-reagent | ThermoFisher Scientific | AM9738 | |
Ultrathin Nanoporous Membrane Chip | SiMPore Inc. | NPSN100-1L | The design is compatible with all of SiMPore membranes |
uSiM component 1 | SiMPore Inc. | NA | |
uSiM component 2 | SiMPore Inc. | NA |
Richiedi autorizzazione per utilizzare il testo o le figure di questo articolo JoVE
Richiedi AutorizzazioneEsplora altri articoli
This article has been published
Video Coming Soon