A subscription to JoVE is required to view this content. Sign in or start your free trial.
We describe fluorescence photoactivation methods to analyze the axonal transport of neurofilaments in single myelinated axons of peripheral nerves from transgenic mice that express a photoactivatable neurofilament protein.
Neurofilament protein polymers move along axons in the slow component of axonal transport at average speeds of ~0.35-3.5 mm/day. Until recently the study of this movement in situ was only possible using radioisotopic pulse-labeling, which permits analysis of axonal transport in whole nerves with a temporal resolution of days and a spatial resolution of millimeters. To study neurofilament transport in situ with higher temporal and spatial resolution, we developed a hThy1-paGFP-NFM transgenic mouse that expresses neurofilament protein M tagged with photoactivatable GFP in neurons. Here we describe fluorescence photoactivation pulse-escape and pulse-spread methods to analyze neurofilament transport in single myelinated axons of tibial nerves from these mice ex vivo. Isolated nerve segments are maintained on the microscope stage by perfusion with oxygenated saline and imaged by spinning disk confocal fluorescence microscopy. Violet light is used to activate the fluorescence in a short axonal window. The fluorescence in the activated and flanking regions is analyzed over time, permitting the study of neurofilament transport with temporal and spatial resolution on the order of minutesĀ and microns, respectively. Mathematical modeling can be used to extract kinetic parameters of neurofilament transport including the velocity, directional bias and pausing behavior from the resulting data. The pulse-escape and pulse-spread methods can also be adapted to visualize neurofilament transport in other nerves. With the development of additional transgenic mice, these methods could also be used to image and analyze the axonal transport of other cytoskeletal and cytosolic proteins in axons.
The axonal transport of neurofilaments was first demonstrated in the 1970s by radioisotopic pulse-labeling1. This approach has yielded a wealth of information about neurofilament transport in vivo, but it has relatively low spatial and temporal resolution, typically on the order of millimeters and days at best2. Moreover, radioisotopic pulse-labeling is an indirect approach that requires the injection and sacrifice of multiple animals to generate a single time course. With the discovery of fluorescent proteins and advances in fluorescence microscopy in the 1990s, it subsequently became possible to image neurofil....
All methods described here have been approved by the Institutional Animal Care and Use Committee (IACUC) of The Ohio State University.
1. Preparation of nerve saline solution
Figure 3 shows representative images from pulse-escape and pulse-spread experiments. We have published several studies that describe data obtained using the pulse-escape method and our methods for the analysis of those data5,6,7,8,17. Below, we show how the pulse-spread data can yield information on the directionality and velocity.......
Care must be taken in the analysis of pulse-escape and pulse-spread experiments because there is significant potential for the introduction of error during the post-processing, principally during the flat-field correction, image alignment and bleach correction. Flat-field correction is necessary to correct for non-uniformity in the illumination, which results in a fall-off in intensity across the field of view from center to periphery. The extent of non-uniformity is wavelength-dependent and thus, should always be perfor.......
The authors would like to thank Paula Monsma for instruction and assistance with confocal microscopy and tibial nerve dissection and Dr. Atsuko Uchida, Chloe Duger and Sana Chahande for assistance with mouse husbandry. This work was supported in part by collaborative National Science Foundation Grants IOS1656784 to A.B. and IOS1656765 to P.J., and National Institutes of Health Grants R01 NS038526, P30 NS104177 and S10 OD010383 to A.B. N.P.B. was supported by a fellowship from the Ohio State University Presidentās Postdoctoral Scholars Program.
....Name | Company | Catalog Number | Comments |
14 x 22 Rectangle Gasket 0.1mm | Bioptechs | 1907-1422-100 | inner gasket |
2-deoxy-D-glucose | Sigma | D6134 | |
30mm Round Gasket w/ Holes | Bioptechs | 1907-08-750 | outer gasket |
35 x 10mm dish | Thermo Fisher | 153066 | dissection dishes |
40mm round coverslips | Bioptechs | 40-1313-0319 | |
60mL syringe - Luer-lock tip | BD | 309653 | |
Andor Revolution WD spinning-disk confocal system | Andor | outfitted with Perfect Focus and FRAPPA systems | |
Calcium chloride | Fisher | C79 | |
Coverslips | Fisher | 12-541-B | for fluorescein slide |
D-(+)-glucose solution | Sigma | G8769 | |
Dissecting pins | Fine Science Tools | 26001-70 | |
Dissection forceps | Fine Science Tools | 11251-30 | fine tipped forceps |
Dissection microscope | Zeiss | 47 50 03 | |
Dissection pan with wax | Ginsberg Scientific | 568859 | |
Dissection scissors | Fine Science Tools | 14061-09 | initial dissection scissors |
FCS2 perfusion chamber | Bioptechs | 060319-2-03 | |
Fluorescein sodium | Fluka | 46960 | |
Inline solution heater | Warner Instruments | SH27-B | |
Laminectomy forceps | Fine Science Tools | 11223-20 | initial dissection forceps |
Magnesium sulfate | Sigma-Aldrich | M7506 | |
Microaqueduct slide | Bioptechs | 130119-5 | |
Microscope slides | Fisher | 12-544-3 | for fluorescein slide |
Microscope stage insert | Applied Scientific Instrumentation | I-3017 | |
Objective heater system | Okolab | Oko Touch with objective collar | |
Objective oil - type A | Nikon | discontinued | |
Plan Apo VC 100x 1.40 NA objective | Nikon | MRD01901 | |
Potassium chloride | Fisher | P217 | |
Potassium phosphate | Sigma-Aldrich | P0662 | |
Sodium bicarbonate | Sigma-Aldrich | S6297 | |
Sodium chloride | Sigma-Aldrich | S7653 | |
Sodium iodoacetate | Sigma-Aldrich | I2512 | |
Syringe pump | Sage Instruments | Model 355 | |
Tubing adapter - female | Small Parts Inc. | 1005109 | |
Tubing adapter - male | Small Parts Inc. | 1005012 | |
Tygon tubing | Bioptechs | 1/16" ID, 1/32" wall thickness | |
Vannas spring scissors | Fine Science Tools | 15018-10 | fine scissors |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright Ā© 2024 MyJoVE Corporation. All rights reserved