A subscription to JoVE is required to view this content. Sign in or start your free trial.
The combined use of microelectrode array technology and 4-aminopyridine-induced chemical stimulation for investigating network-level nociceptive activity in the spinal cord dorsal horn is outlined.
The roles and connectivity of specific types of neurons within the spinal cord dorsal horn (DH) are being delineated at a rapid rate to provide an increasingly detailed view of the circuits underpinning spinal pain processing. However, the effects of these connections for broader network activity in the DH remain less well understood because most studies focus on the activity of single neurons and small microcircuits. Alternatively, the use of microelectrode arrays (MEAs), which can monitor electrical activity across many cells, provides high spatial and temporal resolution of neural activity. Here, the use of MEAs with mouse spinal cord slices to study DH activity induced by chemically stimulating DH circuits with 4-aminopyridine (4-AP) is described. The resulting rhythmic activity is restricted to the superficial DH, stable over time, blocked by tetrodotoxin, and can be investigated in different slice orientations. Together, this preparation provides a platform to investigate DH circuit activity in tissue from naïve animals, animal models of chronic pain, and mice with genetically altered nociceptive function. Furthermore, MEA recordings in 4-AP-stimulated spinal cord slices can be used as a rapid screening tool to assess the capacity of novel antinociceptive compounds to disrupt activity in the spinal cord DH.
The roles of specific types of inhibitory and excitatory interneurons within the spinal cord DH are being uncovered at a rapid rate1,2,3,4. Together, interneurons make up over 95% of the neurons in the DH and are involved in sensory processing, including nociception. Furthermore, these interneuron circuits are important for determining whether peripheral signals ascend the neuroaxis to reach the brain and contribute to the perception of pain5,6,7. T....
Studies were carried out on male and female c57Bl/6 mice aged 3-12 months. All experimental procedures were performed in accordance with the University of Newcastle's Animal Care and Ethics Committee (protocols A-2013-312, and A-2020-002).
1. In vitro electrophysiology
Model of network activity in the spinal cord dorsal horn
Application of 4-AP reliably induces synchronous rhythmic activity in the spinal cord DH. Such activity presents as increased EAPs and LFPs. The later signal is a low-frequency waveform, which has previously been described in MEA recordings30. Changes in EAP and/or LFP activity following drug application reflect altered neural activity. Examples of EAPs and LFPs are shown in Figure 3B and .......
Despite the importance of the spinal DH in nociceptive signaling, processing, and the resulting behavioral and emotional responses that characterize pain, the circuits within this region remain poorly understood. A key challenge in investigating this issue has been the diversity of neuron populations that comprise these circuits6,31,32. Recent advances in transgenic technologies, led by optogenetics and chemogenetics, are beginn.......
This work was funded by the National Health and Medical Research Council (NHMRC) of Australia (grants 631000, 1043933, 1144638, and 1184974 to B.A.G. and R.J.C.) and the Hunter Medical Research Institute (grant to B.A.G. and R.J.C.).
....Name | Company | Catalog Number | Comments |
4-aminopyridine | Sigma-Aldrich | 275875-5G | |
100% ethanol | Thermo Fisher | AJA214-2.5LPL | |
CaCl2 1M | Banksia Scientific | 0430/1L | |
Carbonox (Carbogen - 95% O2, 5% CO2) | Coregas | 219122 | |
Curved long handle spring scissors | Fine Science Tools | 15015-11 | |
Custom made air interface incubation chamber | |||
Foetal bovine serum | Thermo Fisher | 10091130 | |
Forceps Dumont #5 | Fine Science Tools | 11251-30 | |
Glucose | Thermo Fisher | AJA783-500G | |
Horse serum | Thermo Fisher | 16050130 | |
Inverted microscope | Zeiss | Axiovert10 | |
KCl | Thermo Fisher | AJA383-500G | |
Ketamine | Ceva | KETALAB04 | |
Large surgical scissors | Fine Science Tools | 14007-14 | |
Loctite 454 Instant Adhesive | Bolts and Industrial Supplies | L4543G | |
MATLAB | MathWorks | R2018b | |
MEAs, 3-Dimensional | Multichannel Systems | 60-3DMEA100/12/40iR-Ti, 60-3DMEA200/12/50iR-Ti | 60 titanium nitride (TiN) electrodes with 1 internal reference electrode, organised in an 8x8 square grid. Electrodes are 12 µm in diameter, 40 µm (100/12/40) or 50 µm (200/12/50) high and equidistantly spaced 100 µm (100/12/40) or 200 µm (200/12/50) apart. |
MEA headstage | Multichannel Systems | MEA2100-HS60 | |
MEA interface board | Multichannel Systems | MCS-IFB 3.0 Multiboot | |
MEA net | Multichannel Systems | ALA HSG-MEA-5BD | |
MEA perfusion system | Multichannel Systems | PPS2 | |
MEAs, Planar | Multichannel Systems | 60MEA200/30iR-Ti, 60MEA500/30iR-Ti | 60 titanium nitride (TiN) electrodes with 1 internal reference electrode, organised in either a 8x8 square grid (200/30) or a 6x10 rectangular grid (500/30). Electrodes are 30 µm in diameter and equidistantly spaced 200 µm (200/30) or 500 µm (500/30) apart. |
MgCl2 | Thermo Fisher | AJA296-500G | |
Microscope camera | Motic | Moticam X Wi-Fi | |
Multi Channel Analyser software | Multichannel Systems | V 2.17.4 | |
Multi Channel Experimenter software | Multichannel Systems | V 2.17.4 | |
NaCl | Thermo Fisher | AJA465-500G | |
NaHCO3 | Thermo Fisher | AJA475-500G | |
NaH2PO4 | Thermo Fisher | ACR207805000 | |
Rongeurs | Fine Science Tools | 16021-14 | |
Small spring scissors | Fine Science Tools | 91500-09 | |
Small surgical scissors | Fine Science Tools | 14060-09 | |
Sucrose | Thermo Fisher | AJA530-500G | |
Superglue | cyanoacrylate adhesive | ||
Tetrodotoxin | Abcam | AB120055 | |
Vibration isolation table | Newport | VH3048W-OPT | |
Vibrating microtome | Leica | VT1200 S |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved