A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The present protocol describes the intracerebroventricular (ICV) injection of adult zebrafish with neurotoxic 6-hydroxydopamine (6-OHDA) at the ventral diencephalon (Dn) and the assessment of the impairment and subsequent recovery of swimming behavior postlesion by using the open tank test, which is accompanied by analysis using a video tracking software.
The limitations of current treatments in delaying dopaminergic neuronal loss in Parkinson's disease (PD) raise the need for alternative therapies that can restore these neurons. Much effort is currently directed toward a better understanding of neuroregeneration using preclinical in vivo models. This regenerative capability for self-repair is, however, inefficient in mammals. Non-mammalian animals like zebrafish have thus emerged as an excellent neuroregenerative model due to its capability to continuously self-renew and have a close brain homology to humans. As part of the effort in elucidating cellular events involved in neuroregeneration in vivo, we have established the 6-hydroxydopamine (6-OHDA)-induced adult zebrafish-based PD model. This was achieved through the optimized intracerebroventricular (ICV) microinjection of 99.96 mM 6-OHDA to specifically ablate dopaminergic neurons (DpN) in the ventral diencephalon (Dn) of zebrafish brain. Immunofluorescence indicated more than 85% of DpN ablation at day three postlesion and full restoration of DpN at lesioned site 30 days postlesion. The present study determined the impairment and subsequent recovery of zebrafish swimming behavior following lesion by using the open field test through which two parameters, distance traveled (cm) and mean speed (cm/s), were quantified. The locomotion was assessed by analyzing the recordings of individual fish of each group (n = 6) using video tracking software. The findings showed a significant (p < 0.0001) reduction in speed (cm/s) and distance traveled (cm) of lesioned zebrafish 3 days postlesion when compared to sham. The lesioned zebrafish exhibited full recovery of swimming behavior 30 days postlesion. The present findings suggest that 6-OHDA lesioned adult zebrafish is an excellent model with reproducible quality to facilitate the study of neuroregeneration in PD. Future studies on the mechanisms underlying neuroregeneration as well as intrinsic and extrinsic factors that modulate the process may provide important insight into new cell replacement treatment strategies against PD.
Parkinson's disease (PD), a disease distinctively characterized by muscle rigidity, resting tremor, and bradykinesia, is the fastest growing neurological disease in the world1,2. The risk and prevalence of PD increase rapidly with age especially in individuals aged 50 years and above3. The etiology and pathogenesis of PD hitherto remain poorly understood. This has often left the early-onset of PD undiagnosed. At present, the lack of dopamine and the loss of dopaminergic neurons (DpN) in PD patients are strongly linked to the manifestation of motor symptoms4. Capitalizing on this relationship, several treatments have been designed either to act directly as dopamine replacement (i.e., levodopa) or to compensate for the loss of DpN (i.e., deep brain stimulation). Although these treatments bring about symptomatic benefits, they do not modify the deteriorating course of the disease5. In view of this significant weakness, cell replacement therapy has been proposed. The efficacy of this approach is, however, inconsistent given the challenges of graft preparation, cell growth control, and phenotype instability. Cell replacement therapy, which had raised ethical concerns, also poses the risk of inducing brain tumors and unwanted immune reactions6,7.
The limitations of current therapeutic strategies have led to a greater emphasis on the regeneration of DpN as a potential approach in treating PD. Regeneration of DpN or neuroregeneration has emerged as one of the promising breakthroughs in the management of PD, not only due to its potential as a new therapeutic method but also as means to understand the mechanism of the disease8,9. This approach focuses on the restoration of neuronal function through differentiation, migration, and integration of existing progenitor cells into the lesioned circuitry10. In order to further explore neuroregeneration, various in vivo studies have been undertaken. It was found that vertebrates such as mammals, amphibians, and reptiles generate new brain cells following injury11,12. Among the vertebrates, mammalian animals are more sought after given their genetic resemblance to human beings. Mammals, however, exhibit limited and poor reparative capacity in the central nervous system (CNS) that can last through adulthood following a brain lesion13. In general, mammals are unsuited as animal models for understanding neuroregeneration given that the low number of neurons produced will not be sufficient to restore damaged neural circuits observed in PD. As such, the teleost-based model, specifically in zebrafish, is greatly favored for its high proliferative rate, capability to continuously self-renew, and close brain homology with humans14,15.
Zebrafish is most commonly used to study disordered movement in PD16. The zebrafish-based PD model is usually induced by neurotoxins, which include 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA)17. Although effective in inducing specific loss of DpN and decrease of dopamine levels, MPTP-based models do not closely mimic the conditions of PD as the DpN loss is not restricted solely to the CNS18. The inability of 6-OHDA to cross the blood-brain barrier restricted its effects on cellular and functional changes within the brain when it is administered intracranially as opposed to intramuscularly19. Peripheral administration of 6-OHDA caused a global reduction of dopamine levels throughout the nervous system20. While administration of 6-OHDA into the cerebrospinal fluid caused ablation of DpN throughout the CNS21, which does not mimic the condition as seen in PD whereby the loss of DpN occurs specifically at the substantia nigra of the human brain. ICV administration of 6-OHDA, on the contrary, specifically induced significant ablation of DpN in the area of ventral Dn in the zebrafish brain, which closely resembled substantia nigra22. Interestingly, recovery of DpN was reported 30 days post 6-OHDA-induced lesion and these neurons survived over the course of life23,24. The functional recovery of DpN was demonstrated through a locomotor assessment of distance traveled (cm) and mean speed (cm/s) using the 6-OHDA-induced adult zebrafish-based PD model22.
The present study has been approved by the Committee on Animal Research and Ethics (CARE), Universiti Technologi MARA (UiTM) [Reference No: UiTM CARE 346/2021, dated 7 May 2021].
NOTE: The published protocols22,25,26 for standard husbandry and maintenance of the 6-OHDA-lesioned adult zebrafish PD model were utilized. Experiments were conducted with adult male zebrafish (Danio rerio) aged more than five months old with a standardized length of 3.2-3.7 cm.
1. Zebrafish maintenance and pre-ICV microinjection preparations
2. Anaesthetisation and ICV injection of zebrafish
Figure 1: Injection site of neurotoxin, 6-OHDA. (A) The point of microcapillary entry is guided by the intersection between the metopic suture (MS), coronal suture (CS), and sagittal suture (SS) that connects the frontal and parietal skull of the zebrafish brain (plan view). (B) A schematic drawing (plan view) of the zebrafish skull and brain shows the microcapillary, which is lowered directly above the habenula (Hab), and its point of entry at the intersection between hemispheres. (C) A schematic drawing (sagittal section) of the zebrafish brain shows the angle of injection and depth of penetration. The black dot represents the lesioned site that is situated above the targeted area, the ventral diencephalon. Abbreviations: 6-OHDA: 6-hydroxydopamine, CS: coronal suture, Dn: diencephalon, Hab: habenula, Hyp: hypothalamus, MS: metopic suture, OB: olfactory bulb, POA: preoptic area, PT: posterior tuberculum, SS: sagittal suture, Tec: tectum, and Tel: telencephalon. Please click here to view a larger version of this figure.
3. Locomotor assessment
NOTE: Locomotor assessment of zebrafish (n = six / group; sham vs lesioned) was assessed individually via the open tank test using established protocols28,29 at day three and day 30 post-6-OHDA lesion.
Figure 2: Experimental setup of an open tank test for assessment of zebrafish locomotor behavior. (A) The experimental tank (front view) is placed on a raised platform that is illuminated from below. The four walls of the tank are covered with white paper and the recordings are captured axially. The temperature is measured using a thermometer and regulated at 28 ± 1.0 °C using a commercial aquarium heater. (B) Screenshot (plan view) of video recording that is captured using the setup. Please click here to view a larger version of this figure.
The present experiment assessed the changes in adult zebrafish swimming behavior following ICV microinjection with 6-OHDA. The reason for using 6-OHDA as the neurotoxin of choice was due to its inability to cross the blood-brain barrier, which produced specific and targeted ablation of DpN in the area of interest-ventral diencephalon (Dn)16. The DpN subpopulation here holds anatomical resemblance to the DpN subpopulation in the human's substantia nigra pars compacta31.<...
The present work successfully demonstrated the locomotor assessment of the established 6-OHDA-induced, adult zebrafish-based PD model. The entire experiment involved three major steps: pre-ICV microinjection preparations, ICV microinjection of zebrafish, and locomotor assessment. To ensure the healthy recovery of adult zebrafish following the ICV microinjection procedure and good experimental outcome, some good practices for each step have been recommended in the present study.
Pre-ICV microin...
The authors declare no conflicts of interest.
This work was supported by the Ministry of Higher Education Malaysia under the Fundamental Research Grant Scheme [600-IRMI/FRGS 5/3 (033/2019)].
Name | Company | Catalog Number | Comments |
Materials | |||
6-Hydroxydopamine (6-OHDA) | Sigma-Aldrich, Missouri, USA | 162957 | |
Ascorbic acid | Thermo Fisher Scientific, California, USA | FKC#A/8882/53 | |
Disposable pasteur pipette, 3 mL | Thermo Fisher Scientific, California, USA | FB55348 | |
Microcentrifuge tube, 0.2 mL | Eppendorf, Hamburg, Germany | 30124332 | |
Nice conical flask, 100 mL | Evergreen Engineering & Resources, Semenyih, Malaysia | SumYau0200 | |
Phosphate buffered saline (PBS) | Sigma-Aldrich, Missouri, USA | P4417 | |
Sodium bicarbonate | Sigma-Aldrich, Missouri, USA | S5761 | |
Sodium chloride | Merck, Darmstadt, Germany | 106404 | |
Stereomicroscope | Nikon, Tokyo, Japan | SMZ745 | |
Tricaine methanesulfonate (MS-222) | Sigma-Aldrich, Missouri, USA | E10521 | |
Equipment | |||
ANY-maze software | Stoelting Co., Illinois, USA | - | version 7.0; video tracking software |
Cubis II Micro Lab Balance | Sartorius, Göttingen, Germany | SE 2 | |
FemtoJet IV microinjector | Eppendorf, Hamburg, Germany | 5192000035 | |
Femtotip II, sterile injection capillary | Eppendorf, Hamburg, Germany | 5242957000 | |
InjectMan 4 micromanipulator | Eppendorf, Hamburg, Germany | 5192000027 | |
LED Portable Lamp | MR. DIY, Selangor, Malaysia | 9023251 | 20 mAh |
PELCO Pro Superalloy, offset, fine tips | Ted Pella, California, USA | 5367-12NM | |
Shanda aquarium heater | Yek Fong Aquarium, Selangor, Malaysia | SDH-228 | |
Thermometer | Sera Precision, Heinsberg, Germany | 52525 | |
Video camera | Nikon, Tokyo, Japan | D3100 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved