Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol presents a detailed summary of strategies to inoculate plant roots with soil-borne microbes. Exemplified for the fungi Verticillium longisporum and Verticillium dahliae, three different root infection systems are described. Potential applications and possible downstream analyses are highlighted, and advantages or disadvantages are discussed for each system.

Abstract

The rhizosphere harbors a highly complex microbial community in which plant roots are constantly challenged. Roots are in close contact with a wide variety of microorganisms, but studies on soil-borne interactions are still behind those performed on aboveground organs. Although some inoculation strategies for infecting model plants with model root pathogens are described in the literature, it remains difficult to get a comprehensive methodological overview. To address this problem, three different root inoculation systems are precisely described that can be applied to gain insights into the biology of root-microbe interactions. For illustration, Verticillium species (namely, V. longisporum and V. dahliae) were employed as root invading model pathogens. However, the methods can be easily adapted to other root colonizing microbes - both pathogenic and beneficial. By colonizing the plant xylem, vascular soil-borne fungi such as Verticillium spp. exhibit a unique lifestyle. After root invasion, they spread via the xylem vessels acropetally, reach the shoot, and elicit disease symptoms. Three representative plant species were chosen as model hosts: Arabidopsis thaliana, economically important oilseed rape (Brassica napus), and tomato (Solanum lycopersicum). Step-by-step protocols are given. Representative results of pathogenicity assays, transcriptional analyses of marker genes, and independent confirmations by reporter constructs are shown. Furthermore, the advantages and disadvantages of each inoculation system are thoroughly discussed. These proven protocols can assist in providing approaches for research questions on root-microbe interactions. Knowing how plants cope with microbes in the soil is crucial for developing new strategies to improve agriculture.

Introduction

Natural soils are inhabited by an astonishing number of microbes that can be neutral, harmful, or beneficial to plants1. Many plant pathogens are soil-borne, surround the roots, and attack the subterranean organ. These microorganisms belong to a wide variety of clades: fungi, oomycetes, bacteria, nematodes, insects, and some viruses1,2. Once environmental conditions favor infection, susceptible plants will become diseased and crop yields decline. The effects of climate change, such as global warming and weather extremes, will increase the proportion of soil-borne plant pathogens

Protocol

1. Media for fungal cultures and plant inoculation systems

  1. Liquid Potato Dextrose Broth (PDB): Prepare 21 g/L PDB in ultrapure water in a heat-stable flask.
  2. Liquid Czapek Dextrose Broth (CDB): Prepare 42 g/L CDB in ultrapure water in a heat-stable flask.
  3. Medium for the Petri dish inoculation system: Prepare a heat-stable flask with 1.5 g/L Murashige and Skoog medium (MS) and 8 g/L agar in ultrapure water.
    NOTE: Avoid sugar in this medium as it will lead to excessive.......

Representative Results

Following the protocol, the plants were cultivated and inoculated with V. longisporum (strain Vl4325) or V. dahliae (isolate JR218). Various scenarios were designed to prove the effectiveness and to highlight some capabilities of the given protocols. Representative outcomes are shown.

Expressional induction of genes involved in the antimicrobial indol-glucosinolate (IG) biosynthesis is a reliable indicator for the evalu.......

Discussion

Due to the tremendous yield losses caused by soil-borne phytopathogens1, an improvement of farming strategies or crop varieties is required. The limited insight into the pathogenesis of soil-borne diseases hinders the development of more resistant plants. Underlying pathomechanisms need to be explored, for which a robust methodological platform is required. Reported inoculation procedures have shown that multifactorial events in root-microbe interactions can be well dissected by combining differen.......

Acknowledgements

The authors acknowledge Tim Iven and Jaqueline Komorek for previous work on these methods, the group of Wolfgang Dröge-Laser (Department of Pharmaceutical Biology, University of Würzburg, Germany) for providing the equipment and the resources needed for this work, and Wolfgang Dröge-Laser as well as Philipp Kreisz (both University of Würzburg) for critical proofreading of the manuscript. This study was supported by the "Deutsche Forschungsgemeinschaft" (DFG, DR273/15-1,2).

....

Materials

NameCompanyCatalog NumberComments
Agar (Gelrite)Carl RothNr. 0039all systems described require Gelrite
Arabidopsis thaliana wild-typeNASC stockCol-0 (N1092)
AutoclaveSystecVE-100
BlattFlaecheDatinf GmbHBlattFlaechesoftware to determine leaf areas
Brassica napus wild-typesee Floerl et al., 2008rapid-cycling rapegenome ACaacc
Cefotaxime sodiumDuchefaC0111
Chicanery flask 500 mLDuran Group / neoLabE-1090Erlenmeyer flask with four baffles
Collection tubes 50 mLSarstedt62.547.254114 x 28 mm
Czapek Dextrose Broth mediumDuchefaC1714
Digital cameraNikonD3100 18-55 VR
Exsiccator (Desiccator )Duran Group200 DN, 5.8 LSeal with lid to hold chlorine gas
Fluorescence MicroscopeLeicaLeica TCS SP5 II
HClCarl RothP074.3
KNO3Carl RothP021.1≥ 99 %
KOHCarl Roth6751
LeukoporBSN medical GmbH2454-00 APnon-woven tape 2.5 cm x 9.2 m
MES (2-(N-morpholino)ethanesulfonic acid)Carl Roth4256.2Pufferan ≥ 99 %
MgSO4Carl RothT888.1Magnesiumsulfate-Heptahydrate
Murashige & Skoog medium (MS)DuchefaM0222MS including vitamins
NaClOCarl Roth9062.1
Percival growth chambersCLF Plant Climatics GmbHAR-66L2
Petri-dishesSarstedt82.1473.001size ØxH: 92 × 16 mm
Plastic cups (500 mL, transparent)Pro-pac, salad boxx5070size: 108 × 81 × 102 mm
Pleated cellulose filterHartensteinFF12particle retention level 8–12 μm
poly klima growth chamberpoly klima GmbHPK 520 WLED
Potato Dextrose Broth mediumSIGMA AldrichP6685for microbiology
PotsPöppelmann GmbHTO 7 D or TO 9,5 DØ 7 cm resp. Ø 9.5 cm
PromMYB51::YFPsee Poncini et al., 2017MYB51 reporter lineYFP (i.e. 3xmVenus with NLS)
Reaction tubes 2 mLSarstedt72.695.400PCR Performance tested
Rotary (orbital) shakerEdmund BühlerSM 30 C control
Sand (bird sand)Pet Bistro, Müller Holding786157
SoilEinheitserde spezialSP Pikier (SP ED 63 P)
Solanum lycopersicum wild-typesee Chavarro-Carrero et al., 2021Type: Moneymaker
Thoma cell counting chamberMarienfeld642710depth 0.020 mm; 0.0025 mm2
Ultrapure water (Milli-Q purified water)MERKIQ 7003/7005water obtained after purification
Verticillium dahliaesee Reusche et al., 2014isolate JR2
Verticillium longisporumZeise and von Tiedemann, 2002strain Vl43

References

  1. Mendes, R., Garbeva, P., Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Review. 37 (5), 634-663 (2013).
  2. Yadeta, K. A., Thomma, B. P. H. J.

Explore More Articles

Root InoculationSoil borne MicroorganismsVerticilliumArabidopsisRoot microbe InteractionsIn Vitro InoculationRoot InfectionPlant microbe System

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved