A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol describes a straightforward and minimally invasive method for transplanting and imaging NIT-1 cells in non-obese diabetic (NOD)-severe combined immunodeficient mice challenged with splenocytes purified from spontaneously diabetic NOD mice.
Type 1 diabetes is characterized by the autoimmune destruction of the insulin-producing beta cells of the pancreas. A promising treatment for this disease is the transplantation of stem cell-derived beta cells. Genetic modifications, however, may be necessary to protect the transplanted cells from persistent autoimmunity. Diabetic mouse models are a useful tool for the preliminary evaluation of strategies to protect transplanted cells from autoimmune attack. Described here is a minimally invasive method for transplanting and imaging cell grafts in an adoptive transfer model of diabetes in mice. In this protocol, cells from the murine pancreatic beta cell line NIT-1 expressing the firefly luciferase transgene luc2 are transplanted subcutaneously into immunodeficient non-obese diabetic (NOD)-severe combined immunodeficient (scid) mice. These mice are simultaneously injected intravenously with splenocytes from spontaneously diabetic NOD mice to transfer autoimmunity. The grafts are imaged at regular intervals via non-invasive bioluminescent imaging to monitor the cell survival. The survival of mutant cells is compared to that of control cells transplanted into the same mouse.
Type 1 diabetes (T1D) is caused by the autoimmune destruction of the insulin-producing beta cells of the pancreas. The loss of beta cell mass results in insulin deficiency and hyperglycemia. T1D patients rely on multiple daily injections of exogenous insulin and experience episodes of severe hyperglycemia and hypoglycemia throughout their lives. The complications related to these episodes include diabetic retinopathy, decreased kidney function, and neuropathy1.
Insulin injections are a treatment but not a cure for T1D. Replacing the lost beta cell mass, however, has the potential to reverse the disease by enabling pa....
Figure 1: The workflow for transplanting and imaging grafts in an adoptive transfer model of diabetes in mice. NIT-1 cells expressing the firefly transgene luciferase (luc2) are transplanted subcutaneously into NOD-scid mice. The mice are simultaneously injected with autoreactive splenocytes isolated from a spontaneously diabetic NOD m.......
An overview of the protocol is outlined in Figure 1. The survival of two cell lines, such as a mutant and a non-targeting control, may be compared, or the survival of one cell line may be measured in multiple groups of mice, such as drug-treated mice versus vehicle-treated controls. Figure 3A shows three 8-week-old female NOD-scid mice transplanted with a non-targeting control (left) and a mutant (right) cell line. The mice were also injected intravenously with .......
T1D is a devastating disease for which no cure currently exists. Beta cell replacement therapy offers a promising treatment for patients with this disease, but the critical barrier to this strategy is the potential for recurrent autoimmune attack against the transplanted beta cells. The genetic engineering of SC-beta cells to reduce their immune visibility or susceptibility is one potential solution to this problem. Described here is a protocol for non-invasively imaging transplanted beta cells to measure their survival .......
We thank Dr. Erica P. Cai and Dr. Yuki Ishikawa for developing the method described in this protocol (see ref. 11). Research in S.K. and P.Y.'s laboratories is supported by grants from the National Institutes of Health (NIH) (R01DK120445, P30DK036836), JDRF, the Harvard Stem Cell Institute, and the Beatson Foundation. T.S. was supported by a postdoctoral fellowship from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (T32 DK007260-45), and K.B. was supported in part by a fellowship from the Mary K. Iacocca Foundation.
....Name | Company | Catalog Number | Comments |
0.05% Trypsin, 0.53 mM EDTA | Corning | 25-052-CI | |
293FT | Invitrogen | R70007 | Fast-growing, highly transfectable clonal isolate derived from human embryonal kidney cells transformed with the SV40 large T antigen |
ACK Lysing Buffer | Gibco | A10492-01 | |
Alcohol prep pads, 70% Isopropyl alcohol | Amazon/Ever Ready First Aid | B08NWF31DX | |
BD 5ml Syringe Luer-Lok Tip | BD | 309646 | |
BD PrecisionGlide Needle 26G x 5/8 (0.45 mm x 16 mm) Sub-Q | BD | 305115 | |
BD 1 mL TB Syringe Slip Tip | BD | 309659 | |
Blasticidin S HCl | Corning | Â 30-100-RB | |
Cell strainer premium SureStrain, 70 µm, sterile | Southern Labware | C4070 | Or use similar sterile strainer with 40-70um pore size |
CellDrop automated cell counter | Denovix | CellDrop BF-PAYG | Or use similar cell counter device |
Corning 100 mL Penicillin-Streptomycin Solution, 100x | Corning | 30-002-CI | |
Disposable Aspirating Pipets, Polystyrene, Sterile, Capacity=2 mL | VWR | 414004-265 | Or use similar aspirating pipette |
D-Luciferin, Potassium Salt , Molecular Biology Grade, Powder, >99% | Goldbio | LUCK-100 | |
DMEM, high glucose, pyruvate, no glutamine | Gibco | 10313039 | |
Falcon BD tubes, 50 mL | Fisher Scientific | 14-959-49A | |
Fetal Bovine Serum | Gibco | 10437-028 | |
Forceps premium for tissues, 1 x 2 teeth 5 in, German Steel | Fisher Scientific | 13-820-074 | |
Glucose urine test strip | California Pet Pharmacy | u-tsg100 | Or use similar test strip for glucose measurments in urine/blood |
GlutaMAX–1 (100x) | Gibco | 35050-061 | |
Infrared heating lamp | Cole Parmer | 03057-00 | Or use similar infrared lamp |
Insulin syringe 0.5 mL, U-100 29 G 0.5 in | Becton Dickinson | 309306 | |
Isoflurane, USP | Piramal Critical Care | 6679401725 | |
IVIS Spectrum in vivo imaging system | Perkin Elmer | 124262 | Instrument for non-invasively collecting bioluminescent images of transplanted cells |
Living Image Analysis Software | Perkin Elmer | 128113 | Software for collecting and quantifying bioluminescent signal |
Microcentrifuge tubes seal-rite, 1.5 mL | USA Scientific | 1615-5510 | Or use similar sterile microcentrifuge tubes |
NIT-1 | ATCC | CRL-2055 | Pancreatic beta-celll line derived from NOD/Lt mice |
NOD.Cg-Prkdcscid/J | The Jackson Laboratory | 001303 | Mice homozygous for the severe combined immune deficiency spontaneous mutation Prkdcscid, commonly referred to as scid, are characterized by an absence of functional T cells and B cells, lymphopenia, hypogammaglobulinemia, and a normal hematopoietic microenvironment. |
NOD/ShiLtJ | The Jackson Laboratory | 001976 | The NOD/ShiLtJ strain of mice (commonly called NOD) is a polygenic model for autoimmune type 1 diabetes |
PBS, pH 7.4 | Thermo Fisher Scientific | 10010031 | No calcium, no magnesium, no phenol red |
pCMV-VSV-G | Addgene | 8454 | |
pLenti-luciferase-blast | Made in-house | Plasmid available upon request | See Supplemental File 1 |
pMD2.G | Addgene | 12259 | |
pMDLg/pRRE | Addgene | 12251 | |
Polyethylenimine, Linear, MW 25,000, Transfection Grade (PEI 25K) | Fisher Scientific | NC1014320 | |
pRSV-Rev | Addgene | 12253 | |
Restrainer for rodents, broome-style round 1 in | Fisher Scientific | 01-288-32A | |
Scissors, sharp-pointed | Fisher Scientific | 08-940 | Or use other scissors made of surgical-grade stainless steel |
Tissue-culture treated culture dishes | Millipore Sigma | CLS430167-20EA | Or use other sterile cell culture-treated Petri dishes |
Tweezers/Forceps, fine precision medium tipped | Fisher Scientific | 12-000-157 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved