A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Biology
* These authors contributed equally
The human dental pulp represents a promising multipotent stem cell reservoir with pre-eminent regenerative competence that can be harvested from an extracted tooth. The neural crest-derived ecto-mesenchymal origin of dental pulp stem cells (DPSCs) bestows a high degree of plasticity that owes to its multifaceted benefits in tissue repair and regeneration. There are various practical ways of harvesting, maintaining, and proliferating adult stem cells being investigated for their use in regenerative medicine. In this work, we demonstrate the establishment of a primary mesenchymal stem cell culture from dental tissue by the explant culture method. The isolated cells were spindle-shaped and adhered to the plastic surface of the culture plate. The phenotypic characterization of these stem cells showed positive expression of the international society of cell therapy (ISCT)-recommended cell surface markers for MSC, such as CD90, CD73, and CD105. Further, negligible expression of hematopoietic (CD45) and endothelial markers (CD34), and less than 2% expression of HLA-DR markers, confirmed the homogeneity and purity of the DPSC cultures. We further illustrated their multipotency based on differentiation to adipogenic, osteogenic, and chondrogenic lineages. We also induced these cells to differentiate into hepatic-like and neuronal-like cells by adding corresponding stimulation media. This optimized protocol will aid in the cultivation of a highly expandable population of mesenchymal stem cells to be utilized in the laboratory or for preclinical studies. Similar protocols can be incorporated into clinical setups for practicing DPSC-based treatments.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved