A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol outlines the isolation of purified astrocytes and microglia from the adult mouse spinal cord, facilitating subsequent applications such as RNA analysis and cell culture. It includes detailed cell dissociation methods and procedures designed to enhance both the quality and yield of isolated cells.
Astrocytes and microglia play pivotal roles in central nervous system development, injury responses, and neurodegenerative diseases. These highly dynamic cells exhibit rapid responses to environmental changes and display significant heterogeneity in terms of morphology, transcriptional profiles, and functions. While our understanding of the functions of glial cells in health and disease has advanced substantially, there remains a need for in vitro, cell-specific analyses conducted in the context of insults or injuries to comprehensively characterize distinct cell populations. Isolating cells from the adult mouse offers several advantages over cell lines or neonatal animals, as it allows for the analysis of cells under pathological conditions and at specific time points. Furthermore, focusing on spinal cord-specific isolation, excluding brain involvement, enables research into spinal cord pathologies, including experimental autoimmune encephalomyelitis, spinal cord injury, and amyotrophic lateral sclerosis. This protocol presents an efficient method for isolating astrocytes and microglia from the adult mouse spinal cord, facilitating immediate or future analysis with potential applications in functional, molecular, or proteomic downstream studies.
Astrocytes and microglia are versatile glial cells that play vital roles in the central nervous system (CNS), encompassing responsibilities such as regulating neuronal function, contributing to CNS development, maintaining the blood-brain barrier, and participating in other critical processes1,2,3,4. Besides their role in maintaining homeostasis, these glial cells also play a pivotal part in injury and repair mechanisms. Microglia are well-known for their phagocytic, inflammatory, and migratory capabilities following insults or injuries
All animal care and experimental procedures were conducted following the approval of the Animal Care and Use Committee at The George Washington University School of Medicine and Health Sciences (Washington, D.C., USA; IACUC#2021-004). The study utilized male and female C57BL/6J wild-type (WT) mice aged 10 weeks to 5 months, which were sourced from a commercial supplier (see Table of Materials) and housed at The George Washington University. An overview of the protocol workflow is presented in
The methods outlined in this protocol enable the isolation of pure and viable microglia and astrocytes from the adult mouse spinal cord, facilitating various downstream applications, including in vitro functional or histological assays and RNA analysis.
A successful isolation for in vitro studies will result in continuous cell proliferation over several days. Adult cells exhibit a slower proliferation rate compared to cells isolated from neonatal animals, and some debris may .......
The isolation of pure, viable primary cells is paramount for investigating the structure and function of specific cell types. In the adult mouse, particularly in the spinal cord, this task poses significant challenges, as existing protocols are often not tailored to the adult spinal cord10,17. This protocol presents an efficient and cost-effective method applicable to various downstream applications, including cell culture, flow cytometry, histology, and transcri.......
None
We thank Castle Raley at the George Washington University Genomics Core for RNA analyses and Q2 Lab Solutions for RNA sequencing analyses. This work was supported by the National Institute of Neurological Disorders and Stroke [grant number F31NS117085] and the Vivian Gill Research Endowment to Dr. Robert H. Miller. Figure 1 was created with BioRender.com.
....Name | Company | Catalog Number | Comments |
2,2,2-Tribromoethanol | Sigma Aldrich | T48402 | |
24 well tissue culture plate | Avantor | 10861-558 | |
2-Methyl-2-butanol, 98% | Thermo Fisher | A18304-0F | |
4',6-Diamidino-2-Phenylindole, Dihydrochloride | Invitrogen | D1306 | 1:1000 |
45% glucose solution | Corning | 25-037-CI | |
5 mL capped tubes | Eppendorf | 30122305 | |
Acetic acid | Sigma-Adlrich | A6283 | |
Adult Brain Dissociation Kit | Miltenyi | 103-107-677 | |
Anti-ACSA2 Microbead Kit | Miltenyi | 130-097-679 | |
Anti-Iba1 | Wako | 019-1974 | |
Bioanalyzer | Agilent Technologies | G2939BA | |
C57BL/6J wild-type (WT) mice | Jackson Laboratories | ||
CD11b (Microglia) MicroBeads | Miltenyi | 130-093-634 | |
Celltrics 30 µm filter | Sysmex Partec | 04-004-2326 | |
Counting Chamber (Hemacytometer) | Hausser Scientific Co | 3200 | |
Deoxyribonuclease I from bovine pancreas | Sigma Aldrich | D4527-40KU | |
Distilled water | TMO | 15230001 | |
DMEM/F12 | Thermo Fisher | 11320074 | |
DNase for RNA purification | Qiagen | 79254 | |
Dulbecco's phosphate-buffered saline | Thermo Fisher | 14040117 | |
Fetal bovine serum | Thermo Fisher | A5209401 | |
GFAP antibody (mouse) | Santa Cruz | sc-33673 | 1:500 |
GFAP antibody (rabbit) | Dako | Z0334 | 1:500 |
Goat anti-mouse 594 IgG | Invitrogen | a11032 | 1:500 |
Goat anti-mouse 594 IgM | Invitrogen | a21044 | 1:300 |
Goat anti-Rabbit 488 IgG | Invitrogen | a11008 | 1:500 |
Iba1 antibody (rabbit) | Wako | 019-1974 | 1:500 |
MACS Separator | Miltenyi | 130-042-303 | |
Masterflex C/L Pump System | Thermo Fisher | 77122-22 | |
MEM | Corning | 15-015-CV | |
Methanol | Sigma-Adlrich | 439193 | |
Mounting Medium | Vector Laboratories | H-1000-10 | |
MS Columns | Miltenyi | 130-042-401 | |
O4 Antibody | R&D | MAB1326 | |
Penicillin-Streptomycin | Gibco | 15070063 | |
Plugged 9" glass pasteur pipette | VWR | 14672-412 | |
RNeasy Plus Micro Kit | Qiagen | 74034 | |
Royal-tek Surgical scalpel blade no. 10 | Fisher scientific | 22-079-683 | |
Small Vein Infusion Set, 23 G x 19 mm | Kawasumi | D3K2-23G |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved