JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Biology

Analysis of Nonhomologous End Joining and Homologous Recombination Efficiency in HEK-293T Cells Using GFP-Based Reporter Systems

Published: February 2nd, 2024

DOI:

10.3791/66501

1Laboratory of Protein Structure and Function, Institute of Medicine and Pharmacy, Qiqihar Medical University

Abstract

DNA double-strand breaks (DSBs) represent the most perilous DNA lesions, capable of inducing substantial genetic information loss and cellular demise. In response, cells employ two primary mechanisms for DSB repair: nonhomologous end joining (NHEJ) and homologous recombination (HR). Quantifying the efficiency of NHEJ and HR separately is crucial for exploring the relevant mechanisms and factors associated with each. The NHEJ assay and HR assay are established methods used to measure the efficiency of their respective repair pathways. These methods rely on meticulously designed plasmids containing a disrupted green fluorescent protein (GFP) gene with recognition sites for endonuclease I-SceI, which induces DSBs. Here, we describe the extrachromosomal NHEJ assay and HR assay, which involve co-transfecting HEK-293T cells with EJ5-GFP/DR-GFP plasmids, an I-SceI expressing plasmid, and an mCherry expressing plasmid. Quantitative results of NHEJ and HR efficiency are obtained by calculating the ratio of GFP-positive cells to mCherry-positive cells, as counted by flow cytometry. In contrast to chromosomally integrated assays, these extrachromosomal assays are more suitable for conducting comparative investigations involving multiple established stable cell lines.

Explore More Videos

NHEJ

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved