A subscription to JoVE is required to view this content. Sign in or start your free trial.
EUCAST has developed a direct antimicrobial susceptibility testing (AST) protocol for automated blood cultures. However, its dependence on mass spectrometry-based microbial identification can be obviated by using a direct inoculum preparation protocol in an automated microbial identification system. This approach can provide AST reports within 24 h of sample collection.
Gram-negative (GN) sepsis is a medical emergency where management in resource-limited settings relies on conventional microbiological culture techniques providing results in 3-4 days. Recognizing this delay in turnaround time (TAT), both EUCAST and CLSI have developed protocols for determining AST results directly from positively flagged automated blood culture bottles (+aBCs). EUCAST rapid AST (RAST) protocol was first introduced in 2018, where zone diameter breakpoints for four common etiological agents of GN sepsis, i.e., Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii complex can be reported. However, those clinical laboratories that have implemented this method in their routine workflow rely on mass spectrometry-based microbial identification, which is not easily available, thus precluding its implementation in resource-limited settings. To circumvent it, we evaluated a direct inoculum protocol (DIP) using a commercial automated microbial identification and antimicrobial susceptibility testing system (aMIAST) to enable early microbial identification within 8 h of positive flagging of aBC. We evaluated this protocol from January to October 2023 to identify the four RAST reportable GN (RR-GN) in the positively flagged aBC. The microbial identification results in DIP were compared with the standard inoculum preparation protocol (SIP) in aMIAST. Of 204 +aBCs with monomorphic GN (+naBC), one of the 4 RR-GN was identified in 105 +naBCs by SIP (E. coli: 50, K. pneumoniae: 20, P. aeruginosa: 9 and A. baumannii complex: 26). Of these, 94% (98/105) were correctly identified by DIP whereas major error and very major error rates were 6% (7/105) and 1.7% (4/240), respectively. When DIP for microbial identification is done using the EUCAST RAST method, provisional clinical reports can be provided within 24 h of receiving the sample. This approach has the potential to significantly reduce the TAT, enabling early institution of appropriate antimicrobial therapy.
Sepsis, an important global health problem, is defined as life-threatening organ dysfunction due to a dysregulated host response to infection. The Global Burden of Diseases Study estimated that there were 48.9 million cases of sepsis and 11 million sepsis-related deaths worldwide in 2017, which accounted for almost 20% of all global deaths1. Around 2/3rd of bloodstream infections (BSI) causing mortality are due to gram-negative bacterial pathogens2. The leading causes of mortality amongst gram-negatives (GN) are Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and
The study, funded by the intramural research grant given to Dr. Ayush Gupta by AIIMS Bhopal, was approved by the Institutional Human Ethics Committee (IHEC) vide letter no: IHEC- LOP/2022/IL072.
NOTE: A sample volume of 5 ml was used based on studies done by Quesada et al.25 and Munoz-Davila et al.27.
1. Standard inoculum protocol (SIP) for bacterial identification using aMIAST
General outcomes
During the study period, 240 +naBCs underwent identification by aMIAST using both DIP and SIP. Of these, 15% (36/240) +naBCs were found to be polymicrobial after overnight incubation on the plated media. Of the 204 +naBCs, the proportion of RR-GN identified by SIP was 51.5% (105/204). Amongst them, 47.6% (50/105) were E. coli, 19% (20/105) K. pneumoniae, 8.6% (9/105) P. aeruginosa and 24.8% (26/105) A. baumannii complex. A detailed description of.......
Using DIP, we successfully identified the RR-GNs with considerable diagnostic accuracy. The mean TTI after positive flagging of aBC was only 507 min (~ 8.5 h). Thus, when done in conjunction with the EUCAST RAST method for AST determination, it can give isolate identification at 8 h AST reading time. This approach has the potential to implement the EUCAST RAST method obviating the need for mass spectrometry-based identification. This is a boon for the low-resource settings who wish to implement the EUCAST RAST method in .......
The authors have nothing to disclose.
The study was funded by the intramural research grant given to Dr. Ayush Gupta by AIIMS Bhopal. We acknowledge the contribution of laboratory technicians and resident doctors who performed and read the tests diligently during routine and emergency hours.
....Name | Company | Catalog Number | Comments |
ANTIMICROBIAL DISKS | |||
Amikacin disk 30 µg | Himedia, Mumbai, India | SD035-1VL | Antimicrobial susceptibility testing |
Amoxyclav disk (20/10 µg) | Himedia, Mumbai, India | SD063-1VL | Antimicrobial susceptibility testing |
Cefotaxime disk 5 µg | Himedia, Mumbai, India | SD295E-1VL | Antimicrobial susceptibility testing |
Ceftazidime disk 10 µg | Himedia, Mumbai, India | SD062A-1VL | Antimicrobial susceptibility testing |
Ciprofloxacin disk (5 µg) | Himedia, Mumbai, India | SD060-1VL | Antimicrobial susceptibility testing |
Co-Trimoxazole disk (23.75/1.25 µg) | Himedia, Mumbai, India | SD010-1VL | Antimicrobial susceptibility testing |
Gentamicin disk 10 µg | Himedia, Mumbai, India | SD016-1VL | Antimicrobial susceptibility testing |
Imipenem disk 10 µg | Himedia, Mumbai, India | SD073-1VL | Antimicrobial susceptibility testing |
Levofloxacin disk 5 µg | Himedia, Mumbai, India | SD216-1VL | Antimicrobial susceptibility testing |
Meropenem disk 10 µg | Himedia, Mumbai, India | SD727-1VL | Antimicrobial susceptibility testing |
Piperacillin-tazobactam disk (30/6 µg) | Himedia, Mumbai, India | SD292E-1VL | Antimicrobial susceptibility testing |
Tobramycin disk 10 µg | Himedia, Mumbai, India | SD044-1VL | Antimicrobial susceptibility testing |
ATCC Escherichia coli 25922 | Microbiologics, Minnesota USA | 0335A | Recommended Gram negative bacterial strain for quality control in RAST |
BacT-Alert 3D 480 | bioMerieux, Marcy d’ Etoille, France | 412CM8423 | Continuous automated blood culture system |
Biosafety cabinet II Type A2 | Dyna Filters Pvt. Limited, Pune, India | DFP-2/21-22/149 | For protection against hazardous and infectious agents and to maintain quality control |
Blood agar base no. 2 | Himedia, Mumbai, India | M834-500G | Preparation of blood agar and chocolate agar |
Clinical Centrifuge Model SP-8BL | Laby Instruments, Ambala, India | HLL/2021-22/021 | Centrifugation at low and high speed for separation of supernatant |
Dispensette S Analog-adjustable bottle-top dispenser | BrandTech, Essex CT, England | V1200 | Dispensing accurate amount of saline |
MacConkey agar | Himedia, Mumbai, India | M008-500G | Differential media for Lactose fermenters/ non-fermenters Gram negative bacilli |
Micropipette (100-1000 µL) | Axiflow Biotech Private Limited, Delhi, India | NJ478162 | Transferring supernatant after first centrifugation, discarding supernatant after second centrifugation |
Micropipette tips (200-1000 µL) | Tarsons Products Pvt. Ltd., Kolkata, India | 521020 | Transferring supernatant after first centrifugation, discarding supernatant after second centrifugation |
Mueller-Hinton agar | Himedia, Mumbai, India | M173-500G | Antimicrobial susceptibility testing by Kirby-Bauer method of disk diffusion |
Nichrome loop D-4 | Himedia, Mumbai, India | LA019 | For streaking onto culture media |
Nichrome straight wire | Himedia, Mumbai, India | LA022 | For stab inoculation |
Nulife sterile Gloves | MRK healthcare Pvt Limited, Mumbai, India | For safety precautions | |
Plain vial (Vial with red top), Advance BD vacutainer | Becton-Dickinson, Cockeysville, MD, USA | 367815 | Obtaining pellet after second centrifugation |
Sheep blood | Labline Trading Co., Hyderabad, India | 70014 | Preparation of blood agar and chocolate agar |
SST II tube, Advance BD vacutainer | Becton-Dickinson, Cockeysville, MD, USA | 367954 | Supernatant separation in first centrifugation |
Sterile cotton swab (w/Wooden stick) | Himedia, Mumbai, India | PW005-1X500NO | Lawn culture of blood culture broth for antimicrobial susceptibility testing |
Sterile single use hypodermic syringe 5ml/cc | Nihal Healthcare, Solan, India | 2213805NB2 | Preparing aliquots from +aBC |
VITEK DensiCHEK McFarland reference kit | bioMerieux, Marcy d’ Etoille, France | 422219 | Densitometer to check the turbidity of suspension |
VITEK saline solution (0.45% NaCl) | bioMerieux, Marcy d’ Etoille, France | V1204 | Adjustment of McFarland Standard turbidity |
VITEK tube stand | bioMerieux, Marcy d’ Etoille, France | 533306-4 REV | Stand for proper placement of tubes before ID card inoculation |
VITEK tubes | bioMerieux, Marcy d’ Etoille, France | Tubes for inoculum preparation | |
VITEK-2 Compact 60 | bioMerieux, Marcy d’ Etoille, France | VKC15144 | Automated identification and AST system |
VITEK-2 GN card | bioMerieux, Marcy d’ Etoille, France | 21341 | Identification of Gram negative bacilli |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved