Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

EUCAST has developed a direct antimicrobial susceptibility testing (AST) protocol for automated blood cultures. However, its dependence on mass spectrometry-based microbial identification can be obviated by using a direct inoculum preparation protocol in an automated microbial identification system. This approach can provide AST reports within 24 h of sample collection.

Abstract

Gram-negative (GN) sepsis is a medical emergency where management in resource-limited settings relies on conventional microbiological culture techniques providing results in 3-4 days. Recognizing this delay in turnaround time (TAT), both EUCAST and CLSI have developed protocols for determining AST results directly from positively flagged automated blood culture bottles (+aBCs). EUCAST rapid AST (RAST) protocol was first introduced in 2018, where zone diameter breakpoints for four common etiological agents of GN sepsis, i.e., Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii complex can be reported. However, those clinical laboratories that have implemented this method in their routine workflow rely on mass spectrometry-based microbial identification, which is not easily available, thus precluding its implementation in resource-limited settings. To circumvent it, we evaluated a direct inoculum protocol (DIP) using a commercial automated microbial identification and antimicrobial susceptibility testing system (aMIAST) to enable early microbial identification within 8 h of positive flagging of aBC. We evaluated this protocol from January to October 2023 to identify the four RAST reportable GN (RR-GN) in the positively flagged aBC. The microbial identification results in DIP were compared with the standard inoculum preparation protocol (SIP) in aMIAST. Of 204 +aBCs with monomorphic GN (+naBC), one of the 4 RR-GN was identified in 105 +naBCs by SIP (E. coli: 50, K. pneumoniae: 20, P. aeruginosa: 9 and A. baumannii complex: 26). Of these, 94% (98/105) were correctly identified by DIP whereas major error and very major error rates were 6% (7/105) and 1.7% (4/240), respectively. When DIP for microbial identification is done using the EUCAST RAST method, provisional clinical reports can be provided within 24 h of receiving the sample. This approach has the potential to significantly reduce the TAT, enabling early institution of appropriate antimicrobial therapy.

Introduction

Sepsis, an important global health problem, is defined as life-threatening organ dysfunction due to a dysregulated host response to infection. The Global Burden of Diseases Study estimated that there were 48.9 million cases of sepsis and 11 million sepsis-related deaths worldwide in 2017, which accounted for almost 20% of all global deaths1. Around 2/3rd of bloodstream infections (BSI) causing mortality are due to gram-negative bacterial pathogens2. The leading causes of mortality amongst gram-negatives (GN) are Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and

Protocol

The study, funded by the intramural research grant given to Dr. Ayush Gupta by AIIMS Bhopal, was approved by the Institutional Human Ethics Committee (IHEC) vide letter no: IHEC- LOP/2022/IL072.

NOTE: A sample volume of 5 ml was used based on studies done by Quesada et al.25 and Munoz-Davila et al.27.

1. Standard inoculum protocol (SIP) for bacterial identification using aMIAST

  1. Wear clean g.......

Representative Results

General outcomes
During the study period, 240 +naBCs underwent identification by aMIAST using both DIP and SIP. Of these, 15% (36/240) +naBCs were found to be polymicrobial after overnight incubation on the plated media. Of the 204 +naBCs, the proportion of RR-GN identified by SIP was 51.5% (105/204). Amongst them, 47.6% (50/105) were E. coli, 19% (20/105) K. pneumoniae, 8.6% (9/105) P. aeruginosa and 24.8% (26/105) A. baumannii complex. A detailed description of.......

Discussion

Using DIP, we successfully identified the RR-GNs with considerable diagnostic accuracy. The mean TTI after positive flagging of aBC was only 507 min (~ 8.5 h). Thus, when done in conjunction with the EUCAST RAST method for AST determination, it can give isolate identification at 8 h AST reading time. This approach has the potential to implement the EUCAST RAST method obviating the need for mass spectrometry-based identification. This is a boon for the low-resource settings who wish to implement the EUCAST RAST method in .......

Disclosures

The authors have nothing to disclose.

Acknowledgements

The study was funded by the intramural research grant given to Dr. Ayush Gupta by AIIMS Bhopal. We acknowledge the contribution of laboratory technicians and resident doctors who performed and read the tests diligently during routine and emergency hours.

....

Materials

NameCompanyCatalog NumberComments
ANTIMICROBIAL DISKS
Amikacin disk 30 µgHimedia, Mumbai, IndiaSD035-1VLAntimicrobial susceptibility testing 
Amoxyclav disk (20/10 µg)Himedia, Mumbai, IndiaSD063-1VLAntimicrobial susceptibility testing 
Cefotaxime disk 5 µgHimedia, Mumbai, IndiaSD295E-1VLAntimicrobial susceptibility testing 
Ceftazidime disk 10 µgHimedia, Mumbai, IndiaSD062A-1VLAntimicrobial susceptibility testing 
Ciprofloxacin disk (5 µg)Himedia, Mumbai, IndiaSD060-1VLAntimicrobial susceptibility testing 
Co-Trimoxazole disk (23.75/1.25 µg)Himedia, Mumbai, IndiaSD010-1VLAntimicrobial susceptibility testing 
Gentamicin disk 10 µgHimedia, Mumbai, IndiaSD016-1VLAntimicrobial susceptibility testing 
Imipenem disk 10 µgHimedia, Mumbai, IndiaSD073-1VLAntimicrobial susceptibility testing 
Levofloxacin disk 5 µgHimedia, Mumbai, IndiaSD216-1VLAntimicrobial susceptibility testing 
Meropenem disk 10 µg Himedia, Mumbai, IndiaSD727-1VLAntimicrobial susceptibility testing 
Piperacillin-tazobactam disk (30/6 µg)Himedia, Mumbai, IndiaSD292E-1VLAntimicrobial susceptibility testing 
Tobramycin disk 10 µgHimedia, Mumbai, IndiaSD044-1VLAntimicrobial susceptibility testing 
ATCC Escherichia coli 25922Microbiologics, Minnesota USA0335ARecommended Gram negative bacterial strain for quality control in RAST
BacT-Alert 3D 480bioMerieux, Marcy d’ Etoille, France412CM8423Continuous automated blood culture system
Biosafety cabinet II Type A2Dyna Filters Pvt. Limited, Pune, IndiaDFP-2/21-22/149For protection against hazardous  and infectious agents and to maintain quality control
Blood agar base no. 2Himedia, Mumbai, IndiaM834-500GPreparation of blood agar and chocolate agar
Clinical Centrifuge Model SP-8BLLaby Instruments, Ambala, IndiaHLL/2021-22/021Centrifugation at low and high speed for separation of supernatant
Dispensette S Analog-adjustable bottle-top dispenser BrandTech, Essex CT, EnglandV1200Dispensing accurate amount of saline
MacConkey agar Himedia, Mumbai, IndiaM008-500GDifferential media for Lactose fermenters/ non-fermenters Gram negative bacilli
Micropipette (100-1000 µL)Axiflow Biotech Private Limited, Delhi, IndiaNJ478162Transferring supernatant after first centrifugation, discarding supernatant after second centrifugation
Micropipette tips (200-1000 µL)‎Tarsons Products Pvt. Ltd., Kolkata, India521020Transferring supernatant after first centrifugation, discarding supernatant after second centrifugation
Mueller-Hinton agar Himedia, Mumbai, IndiaM173-500GAntimicrobial susceptibility testing by Kirby-Bauer method of disk diffusion
Nichrome loop D-4Himedia, Mumbai, IndiaLA019For streaking onto culture media
Nichrome straight wireHimedia, Mumbai, IndiaLA022For stab inoculation
Nulife sterile GlovesMRK healthcare Pvt Limited, Mumbai, IndiaFor safety precautions
Plain vial (Vial with red top), Advance BD vacutainerBecton-Dickinson, Cockeysville, MD, USA367815Obtaining pellet after second centrifugation
Sheep bloodLabline Trading Co., Hyderabad, India70014Preparation of blood agar and chocolate agar
SST II tube, Advance BD vacutainerBecton-Dickinson, Cockeysville, MD, USA367954Supernatant separation in first centrifugation
Sterile cotton swab (w/Wooden stick)Himedia, Mumbai, IndiaPW005-1X500NOLawn culture of blood culture broth for antimicrobial susceptibility testing
Sterile single use hypodermic syringe 5ml/ccNihal Healthcare, Solan, India2213805NB2Preparing aliquots from +aBC
VITEK DensiCHEK McFarland reference kitbioMerieux, Marcy d’ Etoille, France422219Densitometer to check the turbidity of suspension
VITEK saline solution (0.45% NaCl)bioMerieux, Marcy d’ Etoille, FranceV1204Adjustment of McFarland Standard turbidity
VITEK tube stand bioMerieux, Marcy d’ Etoille, France533306-4 REVStand for proper placement of tubes before ID card inoculation
VITEK tubesbioMerieux, Marcy d’ Etoille, FranceTubes for inoculum preparation
VITEK-2 Compact 60bioMerieux, Marcy d’ Etoille, FranceVKC15144Automated identification and AST system
VITEK-2 GN cardbioMerieux, Marcy d’ Etoille, France21341Identification of Gram negative bacilli

References

  1. Rudd, K. E., et al. regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 395 (10219), 200-211 (2020).
  2. Ikuta, K. S., et al.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Gram negative SepsisAutomated Blood CultureEUCAST RASTMicrobial IdentificationAutomated Microbial Identification And Antimicrobial Susceptibility Testing SystemDirect Inoculum ProtocolStandard Inoculum Preparation ProtocolEscherichia ColiKlebsiella PneumoniaePseudomonas AeruginosaAcinetobacter Baumannii ComplexResource limited SettingsTurnaround Time

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved