A subscription to JoVE is required to view this content. Sign in or start your free trial.
The placement of implants in a rat model is an essential experimental procedure for clinical research. This study presents a comprehensive surgical protocol for implanting titanium implants into the tibia of rat models with diabetes and osteoporosis.
The rat has long served as a valuable animal model in implant dentistry and orthopedics, particularly in studying the interactions between biomaterials and bone tissue. The rat's tibia is frequently chosen due to its easy surgical access through thin tissue layers (skin and muscle) and the flattened shape of its medial face, facilitating the surgical insertion of intraosseous devices. Additionally, this model enables the induction of specific diseases, mimicking various clinical conditions to assess biological responses to different implant conditions like geometry, surface texture, or biological cues. However, despite its robust cortical structure, certain intraosseous devices may require adaptations in design and size for successful implantation. Therefore, establishing standardized surgical methods for manipulating both soft and hard tissues in the implantation region is essential for ensuring proper implant or screw device placement, particularly in fields like implant dentistry and orthopedics. This study included eighty Sprague Dawley rats divided into two groups based on their respective diseases: Group 1 with osteoporosis and Group 2 with Type 2 Diabetes. Implantations were performed at 4 weeks and 12 weeks, with the same surgeon following a consistent surgical technique. A positive biological response was observed, indicating complete osseointegration of all implants placed. These results validate the success of the surgical protocol, which can be replicated for other studies and serve as a benchmark for the biomaterials community. Notably, osseointegration values remained stable at both 4 weeks and 12 weeks for both disease models, demonstrating a durable integration of the implant over time and emphasizing the establishment of an intimate bone connection as early as 4 weeks.
The common choice of rats as experimental subjects is due to the fact that they are easy to breed and relatively inexpensive compared to larger animal models. The emergence of new procedures, such as the reliable reproduction of a disorder, e.g., osteoporosis or diabetes, makes this model especially useful for analyzing the potential use of treatments and/or the influence of the disease in the biological response to drugs and surgical devices or procedures1,2.
The rat's bone mass gain occurs mostly during the first 6 months of life, although some researchers believe that the lon....
All experimental procedures were conducted in accordance with the European Community Guidelines for the protection of animals used for scientific purposes (Directive 2010/63/EU) as implemented in Spanish law (Royal Decree 53/2013) and Generalitat de Catalunya regulations (Decree 214/97). Ethics approval for all animal procedures and handling was obtained from the Ethics Committee for Animal Experimentation of the Vall D'Hebron Institut de Recerca (registration number 72/18 CEEA). For the osteoporotic model, female Sp.......
Surgical phase
It is important to mention that both animal models used in this study present certain constraints due to the induced diseases. These constraints regarding the manipulation of hard and soft tissues are reflected during the surgical procedure.
In the diabetic model, the rat is larger, making it difficult to stabilize the legs during surgical procedures. This increases the surgical time and, consequently, the anesthesia time, which requires a longer recovery .......
Although the rat is a widely used model for studying osseointegration, it is important to define and describe a reproducible surgical technique for adequately placing implants. Such a technique could serve as a guide for the scientific community. Moreover, the fact that certain diseases, such as osteoporosis and diabetes, alter bone metabolism implies stronger demands for correctly designing surgical procedures. The rat compares favorably with other animal models since it presents the main features of both osteoporosis (.......
The authors thank the Spanish State Research Agency for financial support through projects PID2020-114019RBI00 and PID2021-125150OB-I00.
....Name | Company | Catalog Number | Comments |
22 G needles+A2:C30 | Terumo | NN-2238R | |
4/0 monofilament synthetic resorbable suture | Braun ( MonoSyn) | ||
5 mL, 10 mL syringes | Braun | 4617100V-02 4606051V | |
Adson forceps | Antão Medical | Ref: A586 | |
BBDR ( Biobreeding Diabetes Resistant ) Sprague Dawley Rats | Janvier Labs | ||
Betadine | Mylan | ||
Buprecare | Animalcare (UK) | ||
Castroviejo Caliper 0-40 mm 15 cm angled | UL AMIN Industries | ||
Castroviejo Needle Holder | Antão Medical | Ref: AM1702 | |
Dental surgery scissors curved and straight | Antão Medical | AMA603 / AMA600 | |
Electric shaver | Oster Pro 3000i | 34264482227 | |
Extra Fine Graefe Forceps | F.S.T | Ref: 11150-10 | |
Gauze pads | COVIDIEN | 441001 | |
Glucometer | Menarini (Italy) | ||
Helicoidal Drill / OSTEO-PIN DRILL Ø1.6 mm | soadco | Ref. OS-8001 | |
Implants / SCREW OSTEO-PIN Ø1.8 x 2.0 mm | soadco | Ref. OS-3 | |
Isoflo | Le Vet Pharma (Netherlands) | ||
Lance pilot drill / Lanceolate Drill (DS) | soadco | Ref. 10 02 01 T | |
Latex gloves - Surgical gloves sterile | Hartmann | Ref: 9426495 | |
Lucas Surgical Curette | Antão Medical | Ref: AMA940-3 | |
Metacam | Boehringer Ingelheim(Germany) | ||
Micro forceps straight | nopa | Ref: AB 542/12 | |
Micro-CT scan( Quantum Fx microCT ) | Perkin Elmer (US) | ||
Osteoporotic Sprague Dawley females Rats | Janvier Labs | ||
Periosteal elevator - Molt 2-4 | Antão Medical | Ref: A1564 | |
Physiologic solution for Irrigation | Hygitech | Ref:10238 | |
Scalpel Blade Carbon Steel 15C | Razor Med | Ref: 02846 | |
Sterile Gauze Swabs | Alledental | Ref: 270712 | |
Sterile Irrigation system | Hygitech | Ref:HY1-110001D | |
Sterile towels (1 piece per animal) | Dinarex | 4410 | |
Surgical contra-angle handpiece | W&H | Ref: WS-75 LED G | |
Surgical contra-angle handpiece | W&H | SN 08877 | |
Surgical contra-angle handpiece | W&H | SN 01309 | |
Surgical Electric Motor | WH Implantmed Type: SI-1023 | Ref: 30288000 | |
Surgical scalpel handle | AsaDental | Ref: 0350-3 | |
Towel clamps | Xelpov surgical | AF-773-11 | |
Ultrasonic device | J.P. Selecta, Abrera, Spain |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved
We use cookies to enhance your experience on our website.
By continuing to use our website or clicking “Continue”, you are agreeing to accept our cookies.