A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol outlines the isolation of skeletal and cardiac muscle fibro-adipogenic progenitors (FAPs) from spiny mouse (Acomys) via enzymatic dissociation and fluorescence-activated cell sorting. The FAPs obtained from this protocol can be effectively expanded and differentiated to myofibroblasts and adipocytes.
Due to its exceptional repair program, the spiny mouse is an emerging research model for regenerative medicine. Fibro-adipogenic progenitors are tissue-resident cells that are able to differentiate into adipocytes, fibroblasts, and chondrocytes. Fibro-adipogenic progenitors are fundamental for orchestrating tissue regeneration as they are responsible for extracellular matrix remodeling after injury. This study focuses on investigating the specific role of fibro-adipogenic progenitors in spiny mouse cardiac repair and skeletal muscle regeneration. To this end, a protocol has been optimized for the purification of spiny mouse fibro-adipogenic progenitors by flow cytometry from enzymatically dissociated skeletal and cardiac muscle. The population obtained from this protocol is capable of expanding in vitro, and can be differentiated to myofibroblasts and adipocytes. This protocol offers a valuable tool for researchers to examine the distinctive properties of spiny mouse, and to compare them to the Mus musculus. This will provide insights that could advance the understanding of regenerative mechanisms in this intriguing model.
Initially recognized for its exceptionally fragile skin and remarkable ability to repair skin injuries, spiny mouse has demonstrated superior regenerative capacity in various organ systems, such as musculoskeletal, renal, central nervous system, and cardiovascular, when compared to Mus musculus1,2.
Fibro-adipogenic progenitors (FAPs) are a subset of stromal cells that are resident in various tissues, including skeletal and cardiac muscle. These cells possess a unique capacity to commit to fibrogenic and adipogenic lineages in vivo and in vitro
All animal maintenance and experimental procedures were conducted in accordance with the approval of the University of British Columbia Animal Care Committee and the regulations at the University of British Columbia. Animals were housed in an enclosed pathogen-free facility under standard conditions (12:12 light-dark cycle, 21-23 °C, and 40%-60% humidity level) and provided a protein-rich mouse diet and water ad libitum. Adult (4 to 6 months old, 50-60 g) female and male Acomys dimidiatus mice were.......
The schematic for this protocol to isolate and culture skeletal muscle and cardiac FAPs is summarized in Figure 1. For tissue collection, the liver changing color from dark red to pale yellow is usually indicative of a successful perfusion. With the specified age ranges of spiny mouse, the heart weights are typically around 200 mg, while the quadricep muscle is around 350 mg.
During each digestion buffer change in steps 3.5-3.7, the digestion buffer in the digesti.......
Spiny mouse tissues are more sensitive to the stresses in tissue dissociation, and there are several aspects of this protocol aimed at minimizing stress to improve cell viability. Serial enzymatic dissociation technique is employed for sample preparation to lower the concentration of the enzyme required. As enzymatic digestion proceeds, the enzymatic activity decreases. By replacing it with fresh enzymes, consistent enzymatic activity throughout the entire digestion can be better achieved, and high concentrations of the .......
The authors have no conflict of interest to disclose.
We would like to acknowledge Andy Johnson and Justin Wong, UBC flow core, for their expertise and help in optimizing the FACS protocol, as well as the UBC Biomedical Research Center animal facility staff for spiny mouse care. Figure 1 has been made using Biorender. Figure 2 has been made using FlowJo software.
....Name | Company | Catalog Number | Comments |
0.5M EDTA | Invitrogen | 15575–038 | |
1.7 mL Microcentrifuge tubes | VWR | 87003-294 | |
15 mL centrifuge tube | Falcon | 352096 | |
1x Dulbecco’s Phosphate Buffered Saline (DPBS) | Gibco | 14190-144 | |
20 mL syringe | BD | 309661 | |
4′,6-diamidino-2-phenylindole (DAPI) | Invitrogen | D3571 | |
40 μm cell strainer | Falcon | 352340 | |
48 well flat-bottom tissue culture plate | Falcon | 53078 | |
5 mL polypropylene | Falcon | 352063 | |
5 mL polystyrene round-bottom tube with cell-strainer cap | Falcon | 352235 | |
5 mL syringe | BD | 309646 | |
50 mL centrifuge tube | Falcon | 352070 | |
60 mm Petri dish | Falcon | 353002 | |
96 well V-bottom tissue culture plate | Corning | 3894 | |
Acomys dimidiatus mice (spiny mice) | kindly gifted by Dr. Ashley W. Seifert (University of Kentucky). | ||
Ammonium-chloride-potassium (ACK) lysing buffer | Gibco | A10492-01 | |
Anti-perilipin (1:100) | Sigma | P1873 | |
Anti-SMA (1:100) | Invitrogen | 14-9760-82 | |
APC PDGFRa (1:800) | Abcam | ab270085 | |
BD PrecisionGlide Needle 18 G | BD | 305195 | |
BD PrecisionGlide Needle 23 G | BD | 305145 | |
Bovine serum albumin | Sigma | A7906-100g | |
BV605 CD31 (1:500) | BD biosciences | 744359 | |
CaCl2 | Sigma-Aldrich | C4901 | |
Centrifuge | Eppendorf | 5810R | |
DMEM/F12 | Gibco | 11320033 | |
Donkey anti-mouse Alexa 555 (1:1000) | Invitrogen | A31570 | |
Donkey anti-rabbit Alexa 647 (1:1000) | Invitrogen | A31573 | |
Donkey serum | Sigma | S30-100ML | |
FACS sorter - MoFlo Astrios 5 lasers | Beckman coulter | B52102 | |
Fetal bovine serum | Gemini | 100-500 | |
Fine scissors | FST | 14058-11 | |
Fluoromount-G | SouthernBiotech | 0100-01 | |
Forceps | FST | 11051-10 | |
Hemostat | FST | 91308-12 | |
human FGF-basic recombinant protein (bFGF) | Gibco | 13256029 | |
Human TGF beta 1 recombinant protein (TGFb1) | eBiosciences | 14-8348-62 | |
Incubator - Heracell 160i CO2 | ThermoFisher | 51033557 | |
Inverted microscope - Revolve | ECHO | n/a | |
Liberase | Roche | 5401127001 | |
Mouse MesenCult Adipogenic Differentiation 10x Supplement | STEMCELL technologies | 5507 | |
Mouse on mouse (MOM) blocking reagent | Vector Laboratories | MKB-2213 | |
Paraformaldehyde | Sigma | P1648-500g | |
Penicillin-Streptomycin | Gibco | 15140–122 | |
PicoLab Mouse Diet 20 | LabDiet | 3005750-220 | |
Propidium iodide (PI) | Invitrogen | P3566 | |
Transport vial 5mL tube | Caplugs Evergreen | 222-3005-080 | |
Triton X-100 | Sigma | 9036-19-5 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved