A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, a protocol for assaying nucleic acid metabolizing enzymes is presented, using examples of ligase, nuclease, and polymerase enzymes. The assay utilizes fluorescently labeled and unlabeled oligonucleotides that can be combined to form duplexes mimicking RNA and/or DNA damages or pathway intermediates, allowing for the characterization of enzyme behavior.
The availability of a range of modified synthetic oligonucleotides from commercial vendors has allowed the development of sophisticated assays to characterize diverse properties of nucleic acid metabolizing enzymes that can be run in any standard molecular biology lab. The use of fluorescent labels has made these methods accessible to researchers with standard PAGE electrophoresis equipment and a fluorescent-enabled imager, without using radioactive materials or requiring a lab designed for the storage and preparation of radioactive materials, i.e., a Hot Lab. The optional addition of standard modifications such as phosphorylation can simplify assay setup, while the specific incorporation of modified nucleotides that mimic DNA damages or intermediates can be used to probe specific aspects of enzyme behavior. Here, the design and execution of assays to interrogate several aspects of DNA processing by enzymes using commercially available synthetic oligonucleotides are demonstrated. These include the ability of ligases to join or nucleases to degrade different DNA and RNA hybrid structures, differential cofactor usage by the DNA ligase, and evaluation of the DNA-binding capacity of enzymes. Factors to consider when designing synthetic nucleotide substrates are discussed, and a basic set of oligonucleotides that can be used for a range of nucleic acid ligase, polymerase, and nuclease enzyme assays are provided.
All life forms require nucleic acid processing enzymes to carry out fundamental biological processes, including replication, transcription, and DNA repair. Key enzymatic functionalities for these pathways are polymerases, which generate copies of RNA/DNA molecules, ligases which join polynucleotide substrates, nucleases that degrade them, and helicases and topoisomerases, which melt nucleic acid duplexes or change their topology1,2,3,4,5,6,7,8,9,10. In addition, many of these enzymes provide essential molecular tools for applications such as cloning, diagnostics, and high-throughput sequencing11,12,13,14,15.
The functional characteristics, kinetics, and substrate specificities of these enzymes can be determined using labeled DNA/RNA substrates produced by annealing oligonucleotides. Tracking substrates and products has traditionally been achieved by introducing a radioactive label (32P) at either the 5' strand end, which can then be detected by photographic film or with a phosphor imaging system16,17. While radiolabeled substrates offer the benefit of increased experimental sensitivity and do not alter the chemical properties of a nucleotide, the potential health hazards from working with radioisotopes have encouraged the development of non-radioactive nucleic acid labeling to provide a safer alternative for DNA and RNA detection18,19,20. Among these, fluorescence detection, including direct fluorescence detection, time-resolved fluorescence, and energy transfer/fluorescence quenching assays stand out as the most versatile21,22,23,24. The extensive array of fluorophores enables different designs of DNA/RNA substrates featuring unique reporters on each oligonucleotide25. Additionally, the stability of fluorophores, when compared to radioisotopes, allows users to produce and preserve significant quantities of fluorescently labeled DNA substrates19. These fluorophore-labeled substrates can be incubated with the protein of interest, along with different combinations of metal and nucleotide cofactors, to analyze binding and or enzyme activity. Visualization of binding or activity can be observed using various fluorophore dye channels with a gel imaging system. As only the fluorescently labeled oligonucleotides will be visible using this technique, any increase or decrease in the size of the labeled oligonucleotide will be easy to follow. Gels can also be stained afterward, with nucleic acid staining dyes to visualize all DNA bands present on the gel.
Poly-nucleic acid ligases are enzymes that join fragments of DNA/RNA, catalyzing the sealing of breaks by the formation of a phosphodiester bond between 5' phosphorylated DNA termini and the 3' OH of DNA. They can be divided into two groups according to their nucleotide substrate requirement. The highly conserved NAD-dependent ligases are found in all bacteria26 while the structurally diverse ATP-dependent enzymes can be identified through all domains of life8,27. DNA ligases play an important role in Okazaki fragment processing during replication as well as being involved in various DNA repair pathways, such as nucleotide and base excision repair, through the sealing of spontaneous nicks and nicks that are left after repair8,10. Different DNA ligases exhibit varying capacities to join different conformations of DNA breaks, including nicks in a duplex, double-stranded breaks, mismatches, and gaps, as well as RNA and DNA hybrids28,29,30. A diverse range of ligatable substrates can be assembled by annealing oligonucleotides with a 5' phosphate to generate juxtaposed 5' and 3' termini in a nucleic acid duplex31,32,33. The most common method of analysis is resolution by urea PAGE in an end-point assay format; however, recent innovations have included the use of capillary gel electrophoresis, which allows high throughput34, mass-spectrometric profiling35, as well as a homogenous molecular beacon assay, which allows time-resolved monitoring36.
The first step in a ligation reaction is the adenylation of the ligase enzyme by adenosine triphosphate (ATP) or Nicotinamide adenine dinucleotide (NAD), resulting in a covalent enzyme intermediate. The second step in the reaction is adenylation of the nucleic acid substrate on the 5' end of the nick site, which is followed by ligation of the nucleic acid nick strands. Many ligase enzymes that are recombinantly expressed in E. coli are purified in the adenylated form and, therefore, are able to successfully ligate nucleic acids without the addition of a nucleotide cofactor. This makes it difficult to determine what particular type of nucleotide cofactor they require for the ligation of nucleic acids. In addition to describing assays to evaluate DNA ligase activity, a method to reliably determine the cofactor usage by de-adenylating the enzyme using unlabeled substrates is also presented.
Nucleases are a large and diverse group of DNA/RNA modifying enzymes and catalytic RNAs that cleave the phosphodiester bonds between nucleic acids37. Nuclease enzyme functionalities are required in DNA replication, repair, and RNA processing and can be classified by their sugar specificity for DNA, RNA, or both. Endonucleases hydrolyze the phosphodiester bonds within a DNA/RNA strand, while exonucleases hydrolyze DNA/RNA strands one nucleotide at a time from the 3' or 5' end and may do so from either the 3' to 5' or the 5' to 3' end of the DNA38.
While many nuclease proteins are non-specific and may be involved in multiple processes, others are highly specific for a particular sequence or DNA damage6,39,40. Sequence-specific nucleases are used in a wide range of biotechnological applications, such as cloning, mutagenesis, and genome editing. Popular nucleases for these applications are restriction nucleases41, zinc-finger nucleases42, transcriptional activator-like effector nucleases, and most recently, the RNA-guided engineered CRISPR nucleases43. Damage-specific nucleases have recently been identified, such as the EndoMS nuclease, which has specificity for mismatches in the DNA through its mismatch-specific RecB-like nuclease domain5,44. Nuclease activity assays, historically, have been done as discontinuous assays with radiolabeled substrates; however, in addition to their other drawbacks, these do not allow the identification of the site that is cut by a nuclease protein, which is possible when using fluorescently labeled substrates45,46. More recently, continuous nuclease assays have been developed which work by using different DNA dyes that interact with DNA in different states; for example, emitting a higher fluorescent signal when interacting with dsDNA than in its unbound state, or binding specifically to short RNAs47. Other continuous nuclease assays use DNA hairpins with a fluorophore group on the 5' and a quencher on the 3' end so that fluorescence increases as the oligonucleotide is degraded due to a separation of the fluorophore and the quencher48. While these assays allow one to characterize the kinetics of DNA-degrading proteins, they require previous knowledge of the enzyme's function and substrate and are also limited to enzymes that change the DNA conformation to cause a difference in dye binding. For this reason, endpoint assays that resolve individual nuclease products are still desirable to provide insight into DNA modifications caused by protein activity.
Here, a detailed procedure is presented for the design of fluorescently labeled DNA/RNA oligonucleotides that can be mixed and matched to generate substrates for testing the activity of novel nuclease, polymerase, and ligase enzymes. The validation of this basic set of oligonucleotide sequences simplifies experimental design and facilitates economical profiling of a wide range of enzymatic functionalities without needing to purchase a large number of bespoke substrates. A detailed procedure is provided for running a standard DNA-processing enzyme assay with these substrates, using the example of DNA ligase activity and modifications for assaying and analyzing nuclease and polymerase enzymes are described. In addition, a modified assay for determining the cofactor specificity of the DNA ligase enzyme with high accuracy is given, and dual-labeled probes are used to evaluate the assembly of multi-component ligations. Finally, modifications to the basic assay format are discussed to allow it to be used to determine protein-DNA interactions with the same substrates by the electrophoretic mobility shift assay (EMSA).
1. Design and purchase of oligonucleotides
NOTE: Design single-stranded oligonucleotides to be assembled and annealed into the desired duplexes. One or more of the strands in a duplex must bear a fluorescent moiety for tracking oligonucleotide processing by the enzyme of interest. A basis set of single-stranded sequences that can be assembled for a range of activities is provided in Table 1.
2. Assembling and annealing nucleic acid duplexes
3. Standard assay setup
4. Analysis of assay results
5. De-adenylation of the DNA ligase to test cofactor specificity
6. Using dual-labeled substrates for splinted ligation or multi-part assembly
7. Evaluation of DNA binding by Electrophoretic Mobility Shift Assay (EMSA) on native gel
Ligation by DNA ligase
DNA ligase enzymatic activity will result in an increase in the size of the fluorescently labeled oligonucleotide when visualized on a urea PAGE gel. In the case of the substrates for both DNA- and RNA-ligation listed in Table 2, this corresponds to a doubling in size from 20 nt to 40 nt (Figure 3A). Optimal enzyme activity can be determined by changing conditions such as temperature, protein concentration, or incubation time (
Critical steps in the protocol
Oligonucleotide design and purchase: When purchasing the oligonucleotides for duplex formation, it is essential to consider sequence design. It is recommended to use an oligo analyzer tool to predict properties of the nucleotide sequence, such as GC content, melting temperature, secondary structure, and dimerization potential, before ordering57.
Assembly and annealing of nucleic acid duplexes: When preparing RNA/RNA-...
SEG and UR are employees of ArcticZymes Technologies AS which distributes the R2D ligase. AW, ER-S and RS have no competing interests.
AW is supported by a Rutherford Discovery Fellowship (20-UOW-004). RS is the recipient of a New Zealand Post Antarctic Scholarship. SG and UR acknowledge the Chemical Institute at the University of Tromsø - The Norwegian Arctic University for technical support.
Name | Company | Catalog Number | Comments |
30% Acrylamide/Bis Solution (29:1) | BioRad | 1610156 | |
Adenosine triphosphate (ATP) | Many suppliers | ||
Ammonium persulfate (APS) | Many suppliers | ||
Benchtop centrifuge | Many suppliers | ||
Borate | Many suppliers | ||
Bromophenol blue | Many suppliers | ||
Dithiothreitol (DTT) | Many suppliers | ||
Electrophoresis system with circulating water bath | Many suppliers | ||
Ethylenediaminetetraacetic acid (EDTA) | Many suppliers | ||
Fluoresnence imager, e.g. iBright FL1000 | Thermo Fisher Scientific | A32752 | |
Formamide | Many suppliers | ||
Gel casting system | Many suppliers | ||
Heating block | Many suppliers | ||
Magnesium Chloride | Many suppliers | Other metal ions may be preferred depending on the protein studied | |
Microcentrifuge tubes (1.5 mL) | Many suppliers | ||
Micropipettes and tips | Many suppliers | 1 mL, 0.2 mL, 0.02 mL, 0.002 mL | |
Nicotinamide adenine dinucleotide (NAD+) | Many suppliers | ||
Oligonucleotides | Integrated DNA Technologies | NA | Thermo Fisher, Sigma-Aldrich, Genscript and others also supply these |
pasture pipette | Many suppliers | ||
PCR thermocycler | Many suppliers | ||
PCR tubes | Many suppliers | ||
RNAse away | ThermoFisher | 7002PK | Only needed when working with RNA oligos |
RNase AWAY | Merck | 83931-250ML | Surfactant for removal of RNAse contamination on surfaces |
RNAse-free water | New England Biolabs | B1500L | Only needed when working with RNA oligos |
Sodium Chloride | Many suppliers | ||
SUPERase IN RNase inhibitor | Thermo Fisher Scientific | AM2694 | Broad spectrum RNAse inhibitir (protein-based) |
SYBR Gold | Thermo Fisher Scientific | S11494 | This may be used to post-stain gels and visualise unlabelled oligonucleotides |
Tetramethylethylenediamine (TMED) | Many suppliers | ||
Tris, or tris(hydroxymethyl)aminomethane | Many suppliers | ||
Ultrapure water (Milli-Q) | Merck | ||
urea | Many suppliers | ||
Vortex | Many suppliers |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved